
Neutron Slowing Down

Justin Pounders

February 15, 2016

Contents

1 Energy balance equation 1

2 Characteristic Neutron Energy Ranges 2
2.1 Fission Energy Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Slowing-Down Energy Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Thermal Energy Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Elastically Scattering Through Energy 5
3.1 Elastic Scattering Energy Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Average Energy Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Average Logarithmic Energy Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Resonance Absorption 6
4.1 Narrow Resonance Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Wide Resonance Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.3 Resonance Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Problems 7

6 References 7

1 Energy balance equation

If we assume that a reactor is very large with respect to the mean free path of a neutron and consists of
a homogeneous material then we may write a balance equations for the neutron density with respect to
energy. In reality, spatial effects will play a role in determining the neutron density, but we will consider
those later. Describing the neutron density with respect to energy alone unveils some important aspects
of reactor physics. The neutron balance equation for neutrons with energy between E and E + dE is

[Σa(E) + Σs(E)]φ(E)dE =

[∫ ∞
0

dE′Σs(E
′ → E)φ(E′) +

χ(E)

k∞

∫ ∞
0

dE′νΣf (E′)φ(E′)

]
dE (1)

where Σa(E) is the macroscopic absorption cross section, Σs(E) is the macroscopic scattering cross section,
Σs(E

′ → E) is the scattering kernel (i.e., Σs(E) multiplied by the probability of a scattering event changing
a neutron’s energy from E′ to E), and Σf (E) is the macroscopic fission cross section. Additionally, χ(E)
is the fission spectrum, which represents the probability that a neutron emitted from fission will emerge
with an energy E, and ν is the average number of neutrons released per fission. The factor k∞ is the
infinite multiplication factor, which is needed to ensure a steady-state solution for the scalar flux, φ(E).
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2 CHARACTERISTIC NEUTRON ENERGY RANGES

Figure 1: Fission cross section (blue) and fission spectrum (red) of uranium-235.

It is presumed that all cross sections and fission parameters are known. Our present goal is then to
solve the neutron balance equation for the energy-dependent flux φ(E). Note that this equation is not an
“energy balance” equation in the sense that it balances the neutron kinetic energy. Rather, it balances
the number of neutrons with a given kinetic energy, namely n(E)dE, which is the number of neutrons
between E and E + dE. The function φ(E), where E is the only independent variable, is often called the
neutron spectrum.

2 Characteristic Neutron Energy Ranges

Rather than seeking an immediate solution to this neutron balance equation, we will first conduct a
qualitative exploration of solution. Neutrons are created from fission with a relatively high kinetic energy,
yet the fission cross section tends to be highest at lower (thermal) energies, as shown in Figure 1. In
between there are large discrete capture resonances that the neutrons must escape while slowing down to
thermal energies.

These three energy ranges (fission spectrum, slowing down, and thermal) each impact the neutron
spectrum, φ(E), in qualitatively different ways. We can roughly characterize the spectrum in each range
by introducing some approximations that permit an analytical solution to the neutron balance equation.

2.1 Fission Energy Range

Neutrons are typically emitted from fission with a kinetic energy of 1 to 2 MeV. This is much higher than
the thermal equilibrium energy that is on the order of 1 eV. At these high energies, the rate of neutrons
being created in interval dE from fission is much greater than neutrons being scattered into dE from lower
energies. Thus

φ(E)dE ≈ χ(E)

k∞Σt(E)

∫ ∞
0

dE′νΣf (E′)φ(E′)dE =
χ(E)

Σt(E)
× constant. (2)

Thus the neutron spectrum at high energies, say E > 0.5MeV , is roughly proportional to the fission
spectrum divided by the total cross section.
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2.2 Slowing-Down Energy Range 2 CHARACTERISTIC NEUTRON ENERGY RANGES

The fission spectrum can be described by a number of different formulations, one of which is the Watt
spectrum. The Watt spectrum is a probability density that can be written

pWatt(E) =
1

I
sinh
√
bEe−E/a (3)

where I is a normalization constant, and a and b are parameters. For uranium-235,

I = 2.0555, (4)
a = 1, (5)
b = 2, (6)

for E in MeV. Integrating this function reveals that roughly 88% of neutrons are created with an energy
between 0.1 and 4 MeV, and only 1.4% are created with an energy less than 0.1 MeV. The average energy
is 2 MeV and the median is about 1.6 MeV.

2.2 Slowing-Down Energy Range

At energies between 1 eV and 50 keV, there are very few neutrons created directly from fission and elastic
scattering is much more important than inelastic scattering. (Why?) The elastic scattering cross kernel
can be written

Σs(E
′ → E) =

{
Σs(E′)
E′(1−α) , E ≤ E′ ≤ E

α

0, otherwise
(7)

where α = [(A− 1)/(A+ 1)]2. If there are J nuclides present then the neutron balance equation becomes

Σt(E)φ(E)dE =
J∑
j=1

[∫ E/αj

E
dE′

Σs(E
′)

E′(1− α)
φ(E′)

]
dE. (8)

Let’s consider the case of neutron slowing down in the presence of hydrogen plus large resonance
aborbers. If the j = 1 nuclide is hydrogen (α = 0) and all the others are quite heavy (α ≈ 1) then we can
write

Σt(E)φ(E) =

[∫ ∞
E

dE′
ΣH
s (E′)

E′
φ(E′)

]
+

J∑
j=2

[∫ E/αj

E
dE′

Σj
s(E′)

E′(1− α)
φ(E′)

]
(9)

≈
∫ ∞
E

dE′
Σs(E

′)

E′
φ(E′) +

J∑
j=2

Σs(E)

α
φ(E) (10)

where in the second approximation we have used Σj
s(E′)φ(E′)/E′ ≈ Σj

s(E)φ(E)/E for E′ ∈ [E,E/αj ].
This equation can be manipulated to yield (approximately

[
Σa(E) + ΣH

s (E)
]
φ(E) =

∫ ∞
E

dE′
ΣH
s (E′)

E′
φ(E′) (11)

where on the left-hand-side we have used ΣH
s (E) ≈ Σs(E)−

∑J
j=2 Σj

s(E)/α. Differentiating this expression
and defining a new function f(E) =

[
Σa(E) + ΣH

s (E)
]
φ(E) leads to

df

dE
= − ΣH

s (E)

E [Σa(E) + ΣH
s (E)]

f(E). (12)
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2.3 Thermal Energy Range 2 CHARACTERISTIC NEUTRON ENERGY RANGES

This equation can be solved using an integrating factor and integrating from E to some arbitrary energy
E1, ultimately leading to

φ(E) =

[
Σa(E1) + ΣH

s (E1)
]
E1φ(E1)

[Σa(E) + ΣH
s (E)]E

exp

[
−
∫ E1

E

Σa(E
′)

[Σa(E′) + ΣH
s (E′)]E′

dE′
]
. (13)

Thus φ(E) varies fundamentally as 1/E with localized perturbations caused by resonances that manifest
in Σa(E) in the denominator of the first term and an overall attenuation arising from the exponential
term, which again is primarily affected by resonances along the energy path from E1 to E.

The fact that the flux will be locally depressed in the vicinity of a large absorption resonance is called
energy self-shielding. The name suggests that because the neutron population is suppressed in a resonance
energy range, the neutrons are naturally “shielded” from the resonance to some degree.

A rough estimate of the number of neutrons that will be absorbed by a given resonance can be obtained
by approximating the number of neutrons that are attenuated by the resonance. Assuming that within
an absorption resonance of width ∆E we will have Σa(E) >> ΣH

s (E) leads to

exp

[
−
∫ E1

E

Σa(E
′)

[Σa(E) + ΣH
s (E)]E′

dE′
]
≈ exp

(
−
∫ E+∆E

E

1

E′
dE′
)

=
1

1 + ∆E/E
. (14)

The first large resonance in uranium-238, for example is located at 6.67 eV with a width of about 0.027
eV. Thus neutrons slowing down through the this resonance would be attenuated by a factor of roughly
0.996, which represents a loss of about 0.4%.

2.3 Thermal Energy Range

We have previously noted that free atoms have random energies that obey the Maxwell-Boltzmann distri-
bution, which written in terms of energy is

pMB(E) = 2

√
E

π

(
1

kT

)3/2

exp

(
− E

kT

)
. (15)

We might expect that as neutrons slow down to “thermal” energies they would assume the a similar energy
profile, effectively becoming part of the equilibrium system. This assumption would not be far off in
general.

In fact, in the absence of absorption and a neutron source, the flux becomes

φ(E) = v(E)n0pMB(E), (16)

where v(E) =
√

2E/m and n0 is a normalization constant. To show that this is so requires the principle
of detailed balance, which states that all scattering kernels possess the property

v(E′)Σs(E
′ → E)pMB(E′) = v(E)Σs(E → E′)pMB(E). (17)

Under the stated assumptions, the neutron balance equation becomes

Σs(E)φ(E) =

∫ ∞
0

dE′Σs(E
′ → E)φ(E′). (18)

Using the property of detailed balance and Eq. (16) in the above equation demonstrates that the
Maxwellian flux given by Eq. (16) is indeed a solution.

Of course assuming that there is no source of neutrons, no absorption and no leakage is a stretch to
say the least. The effects of the slowing-down source, absorption and leakage tend to have the general
effect of “shifting” the Maxwell-Boltzmann distribution up in temperature. Thus one may replace T by
some effective temperature, Teff, in p(E) to obtain a closer match to reality.

There are numerous sophisticated models for predicting the thermal neutron energy distributions, or
one may simply solve the neutron balance equation numerically on a computer. In either approach, an
accurate model should include the effects of molecular and crystalline effects on nuclear motion (when
they exist), as these are important factors at thermal energies.

ENGY 5050, Nuclear Reactor Physics, UMass Lowell



3 ELASTICALLY SCATTERING THROUGH ENERGY

3 Elastically Scattering Through Energy

In the section “Neutron-Nucleus Reactions” we observed that the fact that for a stationary target a neutron
can be scattered from an energy E to an energy E′ ∈ [αE,E] where α = (A−1)2/(A+1)2. In the following
we will derive two quantities that will be useful in discussions resonance absorption: the average energy
loss and the average lethargy loss in elastic collisions. To derive the quantities we need the probability
density function for scattering from E to E′, which we will call P (E′ → E).

3.1 Elastic Scattering Energy Change

If we assume a stationary target we know that

E′

E
=

(1− α) + (1− α) cosφ

2
(19)

where φ is the scattering deflection angle in the CM. Thus energy change is correlated to the angle φ. If
scattering is isotropic in CM, then the probability of scattering through deflection angle φ is

P (φ) =
1

2
sinφ. (20)

Because an incremental energy change dE′ is correlated to a incremental scattering angle −dφ, we have

P (E → E′)dE = −P (φ)dφ. (21)

Substituting the derivative of Eq. (19) into this equation leads to

P (E → E′) =
1

E(1− α)
. (22)

3.2 Average Energy Loss

The average amount of energy lost in a scattering collision is given by

〈∆E〉 = E −
∫ E

αE
E′P (E → E′)dE′ =

1

2
(1− α)E. (23)

Thus the average amount of energy lost per collision is proportional to the pre-collision energy and the
mass term α.

3.3 Average Logarithmic Energy Loss

The average logarithmic energy loss per elastic collision (or equivalent, the average lethargy loss) is given
by

ξ =

∫ E

αE
ln

(
E

E′

)
P (E → E′)dE′ = 1 +

α

1− α
lnα. (24)

Note that hydrogen, α = 0 and the equation can not evaluated directly, but it can be shown that limα→0 ξ =
1. Also note that this value is independent of E.
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4 RESONANCE ABSORPTION

4 Resonance Absorption

To calculate a local neutron spectrum (independent of space) one could solve the slowing-down equation
numerically to an arbitrary degree of accuracy. An analytically exact solution is generally not possible due
to the complex dependence of the cross section on energy, including many closely-spaced and unresolved
resonances. If we consider a very simplistic case, however, we can make some reasonable approxima-
tions that lead to closed-form expressions of the flux spectrum. These approximation are rarely used in
production-level software anymore, but they permit insight that is generally not available from purely
numerical solutions.

Assume that a medium consists of a single moderating material whose scattering cross sections is
much larger than its absorption cross section (ΣM

s >> ΣM
a ) and a resonance isotope. We will consider

the problem of estimating the neutron flux inside of a single resonance within the resonance isotope. The
neutron balance equation in this case can be written[

Σres
t (E) + ΣM

s (E)
]
φ(E) =

∫ E/αM

E

ΣM
s (E′)φ(E′)

E′(1− αM )
dE′ +

∫ E/αres

E

Σres
s (E′)φ(E′)

E′(1− αres)
dE′, (25)

where we have also assumed that ΣM
s is roughly constant over the energy range of interest. In fact we

may assume that the moderator scattering cross section is roughly equal to the potential cross section of
the moderating isotope.

It was previously observed that the neutron flux tends to vary as 1/E in the resonance range. This
variation of the flux is asymptotically valid, away from resonances peaks. If we normalize the flux so that
φ(E) = 1/E above the resonance currently in question, then substitute this value into the first integral in
the balance equation we have[

Σres
t (E) + ΣM

s

]
φ(E) =

ΣM
s

E
+

∫ E/αres

E

Σres
s (E′)φ(E′)

E′(1− αres)
dE′. (26)

For the sake of simplicity, we will consider only a single resonance that is well-separated from other
resonances, in which case the SLBW formula is applicable. The practical width of a resonance is a heuristic
measurement for the “reach” of a given resonance in terms of energy. This practical width can be formed
by comparing the potential cross section, σ`p, with σ0 in the SLBW capture cross section. Looking for an
effective width that produces σ0/σ

0
p ≈ 1 leads to the practical width

Γp ≈
√
σ0

σ0
p

Γx,i. (27)

In general the practical width Γp will be larger than the actual width Γx,i. We will use the practical width
only as a rule of thumb in determining how narrow (or wide) a resonance effectively is.

4.1 Narrow Resonance Approximation

If the practical width of a resonance is much smaller than the average energy loss due to elastic scattering
(i.e., Γp << Ei(1 − αM )/2), then it is likely that a neutron will “jump over” the resonance. Thus, as
we did with the moderating integral, we may assume that the flux takes it’s asymptotic 1/E shape in
the resonance integral. We may also assume that the Σres

s ≈ Σ0,res
p , which is independent of energy for

a/λ << 1. This leads to

[
Σres
t (E) + ΣM

s

]
φ(E) =

ΣM
s

E
+

Σ0,res
p

E
. (28)

This is called the narrow resonance approximation and produces the flux

φNR(E) =
ΣM
s + Σ0,res

p

[Σres
t (E) + ΣM

s ]E
. (29)
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4.2 Wide Resonance Approximation 6 REFERENCES

4.2 Wide Resonance Approximation

If the practical width of a resonance is large compared with the average energy loss due to elastic scattering
(i.e., Γp >> Ei(1−αM )/2), then it is likely that a neutron will experience a reaction inside the resonance
peak. In this case we will not assume the flux has it’s asymptotic form, but rather that Σres

s (E′)φ(E′)
E′) ≈

Σres
s (E)φ(E)

E) within the in-scattering range of the resonance material, which is small because αres ≈ 1. This
leads to

φWR(E) =
ΣM
s

[Σres
a (E) + ΣM

s ]E
. (30)

This is known as the wide resonance approximation (which emphasizes the relationship between the prac-
tical resonance width and the average energy loss) or the narrow resonance, infinite mass approximation
(which emphasizes the assumption that αres ≈ 1).

4.3 Resonance Integral

Once the spectrum φ(E) has been determined, we may use it to evaluate the total absorption rate due to
the resonance. This information is normally computed as the resonance integral,

Iγ,i =
Rγ,i
N res =

∫ ∞
0

σγ,i(E)φ(E)dE. (31)

The resonance integral is useful for calculating the resonance escape probability and multigroup cross
sections, which we will discuss later.

5 Problems

1. Derive the the solution φ(E) using the narrow and wide resonance approximations.

6 References
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