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1 Neutron-Nucleus Reactions

1.1 Introduction

A neutron striking a nucleus may elicit a number of different reactions. The types of reactions may
be broadly divided into absorption and scattering reactions. Absorption reactions are those in which the
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1.2 Scattering Reactions 1 NEUTRON-NUCLEUS REACTIONS

neutron is integrated into the nucleus, forming a new nucleus. Normally this results in an excited, unstable
nucleus. The most common way for the nucleus to alleviate the pressure of the new nucleon is through
emission of a photon. The neutron never re-emerges, so this type of reaction is called a capture reaction.
For fissile isotopes, the absorption process normally causes the nucleus to split violently into two pieces,
or in other words, fission.

Scattering-type reactions can be broadly divided into two categories: elastic and inelastic. Elastic
scattering may be viewed as a classical collision between two solid, non-deformable objects. Billiard
balls are the prototypical example. Because neither object is "deformed" or excited, energy and linear
momentum are conserved in the system. This is in contrast to inelastic collisions.

In inelastic scattering reactions, the neutron is actually temporarily absorbed into the nucleus, bringing
the nucleus to a compound, excited state. The compound nucleus then relaxes by emitting both a neutron
and a photon within a small fraction of a second. The absorption-reemission process is so fast (with respect
to all other time scales of neutron transport) that it may safely be regarded as instantaneous. Because
of the photon emission, neither the kinetic energy nor the momentum of the neutron-nucleus system is
conserved.

Nuclear interactions are typically labeled by identifying the target nucleus, the incoming projec-
tile/particle, particles emitted after the reaction, and the nucleus remaining when the dust settles. For
example, given a nucleus A that is struck by a particle p leading to the emission of particle q and a new
nucleus B one would write A(p, q)B. If the nuclei A and B are implicitly assumed then we may simply
identify the reaction as a (p, q) reaction. Thus our reaction hierarchy so far may be written as

• Absorptions

– Capture, (n, γ)

– Fission, (n, f)

• Scattering

– Elastic scattering, (n, n)

– Inelastic scattering, (n, n′)

Note that we have abused the original notation somewhat (this is standard) by writing f in place of
an ejected particle to denote fission. We have also written n′ as the ejected particle in inelastic scattering
as a reminder that the ejected particle will in general not be the same neutron that struck the nucleus. In
some cases, high-energy inelastic scattering reactions may in fact yield more than one neutrons, in which
would be denoted (n, 2n), (n, 3n), etc. with no apostrophe on the ejected particles.

1.2 Scattering Reactions

To describe the kinematics of neutron-nucleus scattering we will begin with several assumptions.

1. Relativistic effects can be neglected. The kinetic energies of neutrons emitted from fission are low
enough so that the space-time effects described by relativity may be neglected.

2. Neutron-neutron interactions will be neglected. Because the density of nuclei in a reactor is much
higher than the density of neutrons, neutrons are much more likely to collide with nuclei than they
are with other neutrons.

3. Neutrons travel in straight lines between collisions. This assumption holds because neutrons are
neutrally-charged particles and the effect of gravity on neutron trajectories is negligible.

4. Reactors materials are isotropic. This means that a material has no preferred orientation. On the
scale of neutron-nucleus interactions in a reactor this is a valid assumption.

ENGY 5050, Nuclear Reactor Physics, UMass Lowell
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Figure 1: Neutron-nucleus collision in LAB coordinates.

1.2.1 Scattering Kinematics

Let us now consider the specific kinematics associated with scattering.

Vn, V′n : initial and final velocity of the neutron.

E, E′ : initial and final kinetic energy of the neutron.

VA, V′A : initial and final velocity of the nucleus.

We also define the angles γ, θ, and ψ as shown in Figure 1.
The analysis of scattering kinematics is greatly simplifed by working in the center-of-mass reference

frame (CM) rather than the laboratory reference frame (LAB). The origin in the CM reference frame is

rCM =
1

A+ 1
(rn +ArA) (1)

where rn and rA are the positions of the neutron and the nucleus, respectively, and A is the atomic mass
ratio of the nucleus (i.e., the ratio of the mass of the nucleus to the mass of the neutron). Consequently
we may deduce that the origin of the CM system is moving with a velocity of

VCM =
1

A+ 1
(Vn +AVA) . (2)

The velocities of the neutron and nuclear in the CM system are given by the following relations:

vn = Vn −VCM (3a)
v′n = V′n −VCM (3b)
vA = VA −VCM (3c)
v′A = V′A −VCM (3d)
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Figure 2: Neutron-nucleus collision in CM coordinates.

We will also define the relative velocity between the neutron and nucleus, which is the same in both the
CM and LAB systems:

VR = Vn −VA (4)

This definition allows us to write the CM neutron and nucleus velocities as

vn =
A

A+ 1
VR (5a)

vA =
−1

A+ 1
VR (5b)

Thus in the CM system, both neutron and nucleus are moving along the same line in opposite directions
before the collision, as shown in Figure 2.

Consider now the kinetic energy of the system before the collision. Letting the variable, e, denote the
kinetic energy of a particle in the CM system (i.e., relative to the CM velocity) we have

en + eA = eexc (6)

where the subscripts are used in the same way as they were in the velocity variables. The new variable eexc
is called the excitation energy, which is the energy that is available for the reaction, and may be written

eexc =
1

2

mA

A+ 1
V 2
R (7)

where m is the mass of a neutron.

1.2.2 Elastic Scattering

We will now assume that linear momentum is conserved through the collision. In the LAB system this
means

Vn +AVA = V′n +AV′A (8)

ENGY 5050, Nuclear Reactor Physics, UMass Lowell
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VCM
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Figure 3: Relationship between final neutron velocities in LAB and CM.

By using the definitions in Eq. (3) we see that this relationship carries over to CM system, allowing us to
write

vn +AvA = v′n +Av′A (9)

Writing the left-hand-side of this expression (i.e., the pre-collision linear momentum) in terms of the
relative velocity reveals that net linear momentum both before and after the collision is zero:

A

A+ 1
VR −

A

A+ 1
VR = 0 (10)

This means that

vn = −AvA, (11)
v′n = −Av′A. (12)

Let us now additionally assume conservation of kinetic energy before and after the collision. That is,

en + eA = e′n + e′A = eexc. (13)

Using Eq. (5), we find that

vn = v′n =
A

A+ 1
VR, (14)

and

vA = v′A =
1

A+ 1
VR. (15)

Stationary Target Nucleus Consider the special case where target nucleus is stationary, i.e. VA = 0.
From the previous section we know that

VCM =
1

A+ 1
Vn, and (16)

vn = v′n =
A

A+ 1
Vn. (17)

We can sketch a diagram of the relationship between the LAB and CM velocities and the velocity of the
center-of-mass.

From this diagram, we can apply the law of cosines to find

V ′2n = V 2
CM + v′2n + 2VCMv

′
n cos(π − ϕ) (18)

ENGY 5050, Nuclear Reactor Physics, UMass Lowell
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which simplifies to

V ′2n =

[
A2 + 1

(A+ 1)2
+ 2

A

(A+ 1)2
cos(ϕ)

]
V2
n. (19)

An immediate implication of this expression is the relationship between the final and initial kinetic energies
of the neutron and the scattering angle in the CM system:

E′n
En

=
V ′2n
V2
n

=
(1 + α) + (1− α) cos(ϕ)

2
(20)

where

α =

(
A− 1

A+ 1

)2

(21)

To understand this a bit better let’s consider a few limiting cases.

A = 1 : This is the case of a neutron scattering off a hydrogen nucleus, and α = 0. For a glancing collision,
the angle of deflect (ϕ or θ) will be very small. Thus E′n ≈ En and no appreciable energy is lost in
the collision. For a direct hit, in which case the neutron bounces straight back (ϕ = θ = π) we have
$En’ = 0$–the neutron lost all of its energy in a single collision.

A >> 1 : In this case the neutron hits something big, and α ≈ 1. Under these circumstances E′n ≈ En
regardless of the deflection angle. Think of throwing a tennis ball against a brick wall.

Another important ramification is that for any fixed size of the target nucleus, A, their is a limited
range of possible final energies for the neutron. The largest energy loss will occur when the neutron is
scattered directly backward, in which case E′n = αEn. On the other hand, for a small-angle glancing
collision, the final energy will be only slightly less than the initial energy and E′n ≈ En. Note that under
our current assumptions (namely, that the target nucleus is stationary) the neutron will never gain energy.

The preceding work shows us that the amount of energy lost by a neutron depends on the mass of
the target nucleus and the cosine of the deflection angle in the CM system. We can derive a similar
relationship between the energy loss and the cosine of the deflection angle in the LAB system, which is
often more useful from simulation perspective.

Again starting with the diagram and using the law of cosines we have

v′2n = V ′2n + V 2
CM − 2V ′nVCM cos θ. (22)

This simplifies to (
A

A+ 1

)2

V 2
n = V ′2n +

(
1

A+ 1

)2

V 2
n −

2

A+ 1
V ′nVn cos θ. (23)

Multiplying by the mass of a neutron squared divided by four (to get an expression in terms of energies)
and solving for cos θ yields

cos θ =
1

2
(A+ 1)

√
E′n
En
− 1

2
(A− 1)

√
En
E′n

. (24)

1.2.3 Reactions Involving a Compound Nucleus

Elastic scattering may be viewed a billiard ball collision. The neutron and nucleus exchange kinetic energy
and linear momentum but nothing else. In collisions such as inelastic scattering, neutron capture, and
fission however, the neutron and nucleus combine to form a new, compound nucleus. Moreover, this
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compound nucleus will generally be in an excited state, having received additional internal energy from
the collision. We may write such a reaction as

A
ZX + 1

0n→ A+1
Z X∗ (25)

where the * symbol is used to indicate an excited state. The first reaction in this process is the absorption
of a neutron into the target nucleus. The resultant excited nucleus will then decay, generally on a time
scale of 10−14 to 10−21 seconds.

There are two sources of the excitation energy in a compound nucleus. First, there is the kinetic
energy that is available to the reaction. This energy, eexc, is the total pre-collision kinetic energy of the
neutron and nucleus in the CM reference frame. Second, there is a potential source of energy arising from
the change in binding energy between the original and compound nuclei. This change in energy may be
expressed as

∆BE = [M(A, z) +mn −M(A+ 1, Z)] c2 (26)

where M(A,Z) is the mass of nucleus AZX, mn is the mass of the neutron and c is the speed of light in a
vacuum. Thus the total energy available to the reaction is eexc + ∆BE.

Figure 4 shows a cartoon depicting the excitation of a nucleus following neutron capture and three
possible de-excitation processes (also called decay channels). Elastic scattering has already been discussed,
and as we will see, can be treated as a special case of inelastic scattering, which we will now discuss.

1.2.4 Inelastic Scattering

Inelastic scattering involves the formation of a compound nucleus which subsequently decays through the
emission of a neutron and one or more photons (γ rays):

A
ZX + 1

0n→ A+1
Z X∗ → A

ZX + 1
0n+ γ (27)

The presence of the photon at the end of this reaction clearly indicates that energy has not been conserved
between the neutron-nucleus pair. What has happened instead, is that upon ejection of the neutron, the
A
ZX was actually left in an excited state and emitted one (or more) photons to return to the ground state.

When considering the energetics of inelastic scattering, note that the final nucleus is simply the original
target nucleus. Thus the role of the change in binding energy has no net effect on the energy of the system.
There was eexc energy available before the collision (from the kinetic energy of the neutron and nucleus)
and there is still eexc energy available after the collision, although the photon has appeared and claimed
part of the available energy.

A second consideration is that for the compound nucleus to decay into an excited state, there must have
been at least enough energy, eexc, to bridge the gap between the ground and the first excited state of the
original nucleus. Otherwise there would not have been enough energy available after the neutron emission
for the target nucleus to be in an excited state! This type of reaction is known as a threshold reaction,
because the energy of the colliding pair must meet a certain "threshold" value before the reaction can take
place. Note that if the compound nucleus emits a neutron and returns the target nucleus to its ground
state, then there is no photon emission (which is only a result of de-excitation), thus the total energy of the
reaction eexc is shared between the neutron and nucleus as kinetic energy. This, however, implies overall
conservation of kinetic energy between the neutron and nucleus, thus it is an elastic scattering event!

1.2.5 Radiative Capture

A radiative capture reaction is essentially an inelastic neutron scattering without the neutron. That is, the
target nucleus absorbs a neutron then de-excites simply by emitting one or more photons:

A
ZX + 1

0n→ A+1
Z X∗ + γ (28)

Note that the total amount of energy to be relieved through the emission of photons is eexc + ∆BE.
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A+1
Z X

A
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∆BE
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Figure 4: Formation of a compound nucleus following neutron capture. The decay channels shown are 1○
inelastic scattering, 2○ elastic scattering, and 3○ radiative capture.
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1.2.6 Fission Reactions

In a fission reaction, the energy eexc + ∆BE is enough to overcome the fission barrier (which is an
energy threshold), and the nucleus splits into two fragments plus several free neutrons and photons. The
nuclear configuration of the fission fragments and the number of free neutrons emitted are both statistical
quantities.

1.3 References

• Hebert

• Duderstadt and Hamilton

• Stacey

1.4 Problems

1. In the formation of a compound nucleus, why is the available energy equal to eexc, the energy in the
CM system, rather than the total kinetic energy in the LAB system?

2. Show that conservation of linear momentum in the LAB system implies conservation of linear mo-
mentum in the CM system.

3. Show that conservation of energy in the LAB system implies conservation of energy in the CM
system.

1.5 Solutions

2. Starting with conservation of momentum in the in the LAB system we have

Vn +AVA = V′n +AV′A. (29)

Substituting in the CM velocity definitions provides

vn +AvA + (1 +A)VCM = v′n +Av′A + (1 +A)VCM . (30)

Canceling the CM velocity terms yields conservation of momentum in the CM system.

3. Starting with conservation kinetic energy in the LAB system we have
1

2
mV 2

n +
1

2
mAV 2

A =
1

2
m(V ′n)2 +

1

2
mA(V ′A)2 (31)

From the CM velocity definitions we have

V 2
n = |vn + VCM |2 (32)

= (vn cos θn + VCM cos θCM )2 + (vn sin θn + VCM sin θCM )2 (33)

=
(
v2
n cos2 θn + 2vnVCM cos θn cos θCM + V 2

CM cos2 θCM
)

+ (34)(
v2
n sin2 θn + 2vnVCM sin θn sin θCM + V 2

CM sin2 θCM
)

(35)

= v2
n + V 2

CM + 2vnVCM cos(θn − θCM ) (36)

and a similar expression for V 2
A. The angles θn and θCM are the angles associated with the vn and

VCM vectors, respectively. Substituting these expressions into the energy balance equation yields
1

2
m(v2

n + V 2
CM + 2vnVCM cos(θn − θCM )) +

1

2
mA(v2

A + V 2
CM + 2vAVCM cos(θA − θCM )) (37)

=
1

2
m(v′2n + V 2

CM + 2v′nVCM cos(θ′n − θCM )) +
1

2
mA(v′2A + V 2

CM + 2v′AVCM cos(θ′A − θCM )) (38)
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which becomes

1

2
m(v2

n + 2vn ·VCM ) +
1

2
mA(v2

A + 2vA ·VCM ) (39)

=
1

2
m(v′2n + 2v′n ·VCM ) +

1

2
mA(v′2A + 2v′A ·VCM ). (40)

We know that vn = −AvA and v′n = −Av′A, so we have

1

2
mv2

n +
1

2
mAv2

A =
1

2
mv′2n +

1

2
mAv′2A , (41)

which is the conservation of energy in the CM.

2 Cross Sections

2.1 What is a Cross Section?

We have already assumed that neutrons travel along straight trajectories between collisions and argued that
this is indeed a valid assumption within studies of nuclear reactor physics. But how can we characterize
the frequency of collisions for neutrons traveling along a given trajectory? Put another way, if a neutron
starts along a trajectory from a known point, how long should we expect it to travel before it experiences
a collision. This is clearly a problem for probability. Hebert (2009) summarizes the problem nicely.

The probablity for a neutron located at r and moving in a material at velocity Vn to undergo
a nuclear reaction in a differential element of trajectory ds is independent of the past history
of the neutron and is proportional to ds.

In concrete terms, let’s say that we have a neutron that starts moving at a fixed velocity a medium
containing a exactly one kind of nucleus. Then define P [ds] as the probability that the neutron will
experience a collision within a differential distance ds, and consider the following

• We were told (above) that the probability P [ds] is proportional to ds.

• From intuition, we can also convince ourselves that this probability should also be proportional to
the number of "target" nuclei present, so let’s define N as the density of nuclei.

From these observations we may write

P [ds] = σNds (42)

The quantity P [ds] is a probability, so it should be unitless. Given that N is a density and ds is length,
we can infer that the proportionality constant, σ, has units of length squared or area. The constant σ
is called the microscopic cross section. It is common to express the microscopic cross section in units of
barns (b) where 1 b = 10−24 cm2.

The product of the first two variables appearing on the right-hand-side of the probability definition is
called the macroscopic cross section, written as

Σ = σN, (43)

which may be interpreted as the probability per unit path-length of a collision. Thus we may write the
probability of a neutron collision over the differential path-length ds as

P [ds] = Σds. (44)
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Next, consider a population of neutrons with a density, n. For now let’s assume that all neutrons have
the same speed, but they need not be moving in the same direction. The number of neutrons that will
experience a collision within the differential path-length ds along each of their individual trajectories will
be P [ds] multiplied by the number of neutrons. If we multiply by the density of neutrons rather than
the number of neutrons then we get the (differential) density of neutron collisions within a (differential)
distance ds of collective neutron travel:

dC = Σnds. (45)

Note the units of (collisions) per unit volume.
Because all neutrons are moving at the same speed, Vn, we may relate the distance ds (of "collective

neutron travel") to a time interval dt = ds
Vn

. Thus the density of neutron collisions is dC = ΣnVndt.
Dividing by dt and taking dt → 0 gives us an important quantity in reactor physics, called the reaction
rate density :

R =
dC

dt
= ΣnVn. (46)

Because we have officially taken the limit dt → 0 (and correspondingly ds → 0), this quantity is a
point-wise, instantaneous value.

The product of neutron density and neutron speed, nVn, appearing on the right-hand-side of the
reaction rate density is a ubiquitous quantity in reactor physics, called the scalar flux :

φ = nVn. (47)

We have previously established that there are several different types of nuclear reactions (radiative
capture, elastic and inelastic scattering, etc.) Each type of reaction is represented by unique microscopic
cross section. For a reaction of type x, for example, we may write the corresponding cross section σx.
Multiplying by the nuclide density provides the corresponding macroscopic cross section Σx = Nσx.

If there is more than one type of nuclide present, we may simply add the contributions from each to
obtain macroscopic cross section for the mixture:

Σx =
∑
i

Niσx,i. (48)

More over we may sum across all reaction types to obtain the total macroscopic cross sections, which is
the probability per unit path-length of any collision:

Σ =
∑
x

Σx. (49)

Example: Derivation of Mean-Free-Path
Now consider a monoenergetic beam of neutrons with uniform velocity Vn impinging normally on the
surface of slab with a total macroscopic cross section Σ. On average, how far will a neutron travel into
the slab before experiencing its first collision?

First construct a balance equation for the uncollided neutron density as a function of x. We know
that the rate of neutron removal (with respect to x) will be the rate of neutron collisions, and there are
no sources of uncollided neutrons inside the slab. Thus,

dn

dx
= −Σn(x). (50)
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We can solve this equation to determine

n(x) = n(0)e−Σx. (51)

The probability that a neutron will reach a distance x without experiencing is a collision is thus

p0(x) =
n(x)

n(0)
= e−Σx. (52)

Next, the probability of a neutron experiencing its first collision between x and x+ dx is the product
of (1) the probability of the neutron reaching x and (2) the probability of the neutron colliding between
x and x+ dx:

pc(x)dx = p0(x)Σdx = Σe−Σxdx. (53)

Finally, the average distance to first collision, which we will call λ, may be obtained by taking the
integral

λ =

∫ ∞
0

xpc(x)dx =
1

Σ
. (54)

The quantity λ is called the /mean-free-path/ and, for an infinite, homogeneous medium, is equal to the
inverse of the total macroscopic cross section.

2.2 Resonance

Because of the quantum nature of reality, which is very important at the nuclear scale, a nucleus is not
allowed to be excited to an arbitrary energy level. Rather a nucleus may only sit at certain discrete energy
levels, at or above its ground state. Nuclei in excited states will seek to return to the stable ground state,
typically though photon emission, although at high enough energy a neutron or even alpha particle may
be emitted. For some nuclei, the additional energy is sufficient to cause fission.

Although each excitation level, say ei, is discrete, it’s value is not precisely defined due to the Heisenberg
uncertainty principle. Rather each excited state is associated with an energy width, γi, that is centered
at ei and related to the average lifetime of the excited state, τi by

γi =
~
τi
. (55)

Note that the average lifetime τi is equal to the inverse of the decay constant for the excited state.
An excited, compound nucleus at excitation level ei with width γi may have several options for de-

excitation: emitting a photon, a neutron, etc., for example. Each one of these "options" is called a decay
channel. The energy width, γi, of the excited state may be written as a sum of the widths associated with
each possible decay channel:

γi =
∑
x

γi,x, (56)

where x represents a decay channel.
A discussion of the quantum effects surrounding nucleus formation and de-excitation can quickly

become quite involved. While interesting, that discussion is beyond the objectives of our present endeavor.
Thus the following brief sections will only present a high-level summary of the things it might be good to
know as nuclear engineer.

Recall that there is e∗ = eexc + ∆BE of energy available to a newly-created compound nucleus that
has been struck by a neutron. When e∗ is close to an excitation level ei of the compound nucleus–if the
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available reaction energy puts the compound nucleus rather precisely into an excited state–then we observe
a resonance condition. A resonance condition means that is very likely that the compound nucleus will be
formed at the excited state corresponding to the ei level. Resonance conditions have a significant impact
on the likelihood that a reaction will take place, and consequently the cross section for that reaction will
be significantly affected.

2.2.1 Single Level Breit-Wigner Formula

There is a result from quantum mechanics that provides an expression for a reaction cross section in
the vicinity of a resonance. The formula is known as the single level Breit-Wigner Formula (SLBW).
The "single level" qualifier belies the assumption the resonance in question is well-separated from nearby
resonances. Conversely, if two energy states are close enough together that their associated energy widths
(γi γi+1, for example) overlap, then the there will be interference effects between the two states. This will
then lead to more complex expressions for describing the corresponding resonance effects that manifest in
the cross sections.

For a reaction of type x from which there are no emerging neutrons (e.g., radiative capture), the SLBW
may be written

σx(eexc) = σ0
γx,iγi

γ2
i + 4(eexc − ei)2

(57)

where

σ0 = 4πλ2gJ
γn,1(eexc)

γi
, (58)

gJ =
2J + 1

2(2I + 1)
, and (59)

λ =
~√

2eexc

(
Am
A+1

) . (60)

The quantity gJ is a statistical factor expressed in terms of the spin of the target nucleus (I) and compound
nucleus (J). The parameter λ is the de Broglie wavelength of the incident neutron in the CM system.

For an elastic scattering reaction, the SLBW becomes

σe(eexc) = σ`p + σ0

[
2

γi
(eexc − ei) sin 2φ` +

γn,i
γi
− 2 sin2 φ`

]
γ2
i

γ2
i + 4(eexc − ei)2

(61)

where

σ`p = 4πλ2 (2`+ 1) sin2 φ` (62)

is called the potential cross section. In this expressions the quantity ` is the integer angular momentum
quantum number, which enumerates several types of elastic scattering reactions:

` =


0; s-wave interaction
1; p-wave interaction
2; d-wave interaction
etc.

(63)

Most elastic scattering reactions in thermal reactors will be s-wave interactions, characterized by relatively
low incident neutron energies. Heavy target nuclei may give rise to higher-waver interactions. The first
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few φ` shift factors are given by

φ0 =
a

λ
, (64)

φ1 =
a

λ
− tan−1 a

λ
, (65)

φ2 =
a

λ
− tan−1

3a
λ

3−
(
a
λ

)2 (66)

where a is the nucleus diffusion radius, which can be thought of as the "radius of influence" of the nucleus.
(A nucleus does not have a well-defined boundary in the quantum world!)

The expressions so far have been defined with respect to the CM system. Most of us do not live in the
center-of-mass world of nuclear collision; we operate in a world that is stationary with respect to us, i.e.,
the LAB system, and would prefer to work accordingly. The excitation energy eexc in the CM system can
be converted to a LAB energy easily:

Eexc =
A+ 1

A
eexc =

1

2
mnV

2
R. (67)

If we assume that the target nucleus is stationary, then Eexc is simply the initial kinetic energy of the
neutron.

With regard to resonance descriptions, a resonance at ei with a width γx,i for decay channel x in the
CM system becomes the following in the LAB system:

Ei =
A+ 1

A
ei, (68)

Γx,i =
A+ 1

A
γx,i. (69)

The SLBW formulas remain valid in the LAB as long as the lowercase (CM) variables above are replaced
by their uppercase (LAB) counterparts.

We will conclude this section by remarking that in the case of a resonance located at an energy ex,i
above the thermal energy range (i.e., >1 eV). If we assume that that a/λ << 1 then only s − wave
interactions are important. Then using LAB variables, the SLBW formulas become

σx(Eexc) = σ0
Γx,iΓi

Γ2
i + 4 (Eexc − Ei)2 (70)

σe(Eexc) = 4πa2 + σ0
2a

λ

2Γi (Eexc − Ei)
Γ2
i + 4 (Eexc − Ei)2 + σ0

Γn,iΓi

Γ2
i + 4 (Eexc − Ei)2 . (71)

2.2.2 Limitations of SLBW

The main assumption of the SLBW was that resonances were well-separated and did not interfere with
one another. In reality this assumption breaks down, especially in heavy target nuclei and high energies
(& 10 keV). There is a more accurate representation of closely-spaced resonances called the multilevel
Breit-Wigner (MLBW) formula. The complexity of this formula increases significantly. The MLBW is,
however, often used in computer codes that calculate neutron cross sections for reactor physics applications.

2.2.3 Resonance Distributions

The location and density of resonances varies by nuclide and energy. In general both the number and
density of resonances increases with larger nuclides and higher incident neutron energies. Below 1-10 keV
resonances are typically separated enough so that experimentalists can determine the location and width
of the resonances. At higher energies, however, the resonances become so tightly spaced that is impossible,
at present, to distinguish one from the other. We say that these resonances are unresolved, or lie in the
unresolved resonance range, in contrast to the resolved resonance range at lower energies.
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2.3 Non-Stationary Nuclei

In much of our initial discussion on neutron-nuclear interactions we assumed that the target nucleus was
stationary (VA). Short of being at absolute zero temperature, this is never the case in reality. If the speed
of the neutron is much larger than the speed of the target nucleus this ma be a good assumption, however,
so our previous discussions are justified. At neutron energies below 1 eV the random, thermal motion of
the nuclei is not negligible.

2.3.1 Averaging the Microscopic Cross Section

The velocities of nuclei in thermal equilibrium is described by the Maxwell-Boltzmann probability density
function,

p(VA) =

(
mA

2πkT

) 3
2

exp

(
−
mAV 2

A

2kT

)
(72)

where

k is the Boltzmann constant,

T is the absolute temperature of the material,

m is the neutron mass,

A is the ratio of the nuclear mass to the mass of a neutron.

p(VA)d3VA is the probability for a nucleus to have a velocity within an interval d3VA of VA.

We know that for a fixed neutron speed Vn the reaction rate for reaction type x is defined by

Rx = Nσx(Eexc)VRn, (73)

where N and n are the densities of the nuclei and neutrons, respectively. Note that because we are not
assuming a stationary nucleus, we use the relative speed, VR, which is the speed at which the neutron
is approaching the target, VR = Vn − VA. Also recall that the excitation energy in the LAB is Eexc =
A+1
A eexc = 1

2mV
2
R (where m is the neutron mass), so we may use Eexc and VR interchangeably as the

independent variable in the microscopic cross section. Thus for a fixed neutron speed Vn the reaction rate
depends on the speed of the target nucleus which is random. To account for this thermal motion of the
nuclei, we can calculate an average reaction rate over the probability distribution of target nuclei:

〈Rx〉 =

∫ ∞
0

p(VA)Nσx(|Vn −VA|) |Vn −VA|nd3VA , (74)

where the integral is taken over each of the velocity components. From this average reaction rate we can
define a new effective microscopic cross section averaged over the motion of the nuclei, which for neutron
with speed Vn is:

σ̄x(Vn) = 〈σx(|Vn −VA|)〉 =
1

Vn

∫ ∞
0

p(VA)σx(|Vn −VA|) |Vn −VA| d3VA . (75)

Plugging in the Maxwell-Boltzmann distribution into this expression yields

σ̄x(Vn) =
1

Vn

(
mA

2πkT

) 3
2
∫ 2π

0
δ

∫ ∞
0

dVxyVxy

∫ ∞
−∞

dVz exp

(
−
mAV 2

A

2kT

)
σx(VR)VR . (76)
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The expression can be simplified somewhat without approximation. To begin, consider the velocity of the
target nucleus decomposed into a radial (xy) and axial (z) component:

VA = Vxy cos ηi + Vxy sin ηj + Vzk (77)

where η ∈ [0, wπ], and

d3VA = VxydηdVxydVz . (78)

The primary quantity that needs to be evaluated for the averaging is the relative speed. If we define the
coordinate reference frame so that the k unit vector is pointing in the direction of neutron travel then we
have

VR = |Vn −VA| =
√
V 2
xy + (Vn − Vz)2 . (79)

Additionally,

V 2
A = V 2

xy + V 2
z = V 2

R − V 2
n + 2VnVz . (80)

Finally, changing the variable of integration of the first integral from Vxy to Eexc using the relationship

Eexc =
1

2
m
[
V 2
xy + (Vn − Vz)2

]
(81)

(which requires changing the bounds of the Vz integration) and integrating over Vz yields

σ̄x(E) =
1

∆
√
π

∫ ∞
0

dEexc

√
Eexc

E
σx(Eexc)

{
exp

[
− A

kT

(√
Eexc −

√
E
)2
]

exp

[
− A

kT

(√
Eexc +

√
E
)2
]}
(82)

where

∆ = 2

√
EkT

A
and E =

1

2
mV 2

n . (83)

2.3.2 Averaging Resonance Cross Sections

Accounting for the thermal motion of nuclei in resonance cross sections is at the heart of the Doppler
broadening effect, which is an important player in both steady-state and transient reactor analysis. In the
case of an isolated, narrow resonance above the thermal neutron energy range we can take several further
steps to simplify Eq. (82).

1. If the neutron has a kinetic energy significantly above the average kinetic energy of the nuclei then

Eexc ≈ E and we may assume that exp

[
− A
kT

(√
Eexc +

√
E
)2
]
<< exp

[
− A
kT

(√
Eexc −

√
E
)2
]
.

Consequently we will take

exp

[
− A

kT

(√
Eexc +

√
E
)2
]
≈ 0 . (84)

2. Because we have assumed that the resonance is narrow we may assume that the peak energy, Ei, is
much greater than the resonance width, Γi.

3. When Eexc is much different than E, the first exponential term in Eq. (82) will rapidly tend to a
small number. Thus we may generate a Taylor expansion of

(√
Eexc −

√
E
)
in E with Eexc = E+ ε

and ε << E.
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4. We assume s− wave interactions and use lab variables so that Eqs. (70) and (71) may be used.

5. Assume that Γx,i and Γi are constant. (In reality there is some variation with energy.)

Applying all of these assumptions and approximations leads to

σ̄x(E) =
1

∆
√
π
σ0(E)

Γx,i
2

∫ ∞
−2Ei/Γi

dv
1

1 + v2
× (85)

exp

{
− A

kT

Γ2
i (v − u)2

16E

[
1− 1

2

(
Γi(v − u)

2E

)
+

5

16

(
Γi(v − u)

2E

)2

+ . . .

]}
(86)

where

u =
2

Γi
(E − Ei) and v =

2

Γi
(Eexc − Ei) . (87)

The lower integration limit can be replaced by −∞ because Γi << Ei, leading to the following result:

σ̄x(E) = σ0(E)
Γx,i
Γi

ψ(u, α, β) (88)

where

ψ(u, α, β) =
1

β
√
π

∫ ∞
−∞

dv
1

1 + v2
exp

{
−(v − u)2

β2

[
1− 1

2
α(v − u) +

5

16
α2(v − u)2 + . . .

]}
(89)

and

α =
Γi
2E

and β =
2∆

Γi
. (90)

This expression ψ(u, α, β) is called the generalized Doppler psi function. A common simplification is to
assume that E ' Ei, in which case,

β =
2ΓD
Γi

(91)

where the Doppler width has been defined as

ΓD = 2

√
EikT

A
. (92)

Using the same mathematical treatment, a similar expression can be derivied for the SLBW elastic
scattering resonance formula. The result is

σ̄e(E) = 4πa2 + σ0(E)
2a

λ
φ(u, α, β) + σ0(E)

Γn,i
Γi

ψ(u, α, β) (93)

where

φ(u, α, β) =
1

β
√
π

∫ ∞
−∞

dv
v

1 + v2
exp

{
−(v − u)2

β2

[
1− 1

2
α(v − u) +

5

16
α2(v − u)2 + . . .

]}
(94)

Let’s take a moment to summarize what has been done in the preceding. We began with the microscopic
cross section σx that is proportional to the probability of a neutron-nucleus interaction and depends
on (equivalent) the excitation energy Eexc or the relative speed of the neutron-nucleus pair VR. Either
parameter is complicated by the fact that the nuclei are moving in essentially a random fashion, describable
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by the probability function p(VA). At thermal equilibrium, this probability function is the Maxwell-
Boltzmann distribution, so we can derive an expression for the microscopic cross section that is averaged
over the thermal motion of the nuclei. This was the main result.

Remember that the Maxwell-Boltzmann distribution is a function of the temperature of the material.
Thus as the temperature changes so will the averaged microscopic cross sections. This phenomenon is
called the Doppler broadening effect.

The φ− ψ Doppler functions derived in this section relied on several important assumptions that will
not always hold up in reality. When situations arise in which these functions are not appropriate one may
resort to approximate numerical evaluations of Eq. 82 directly. This is commonly done in practice.

2.3.3 Other Considerations

Many absorption-type cross sections (without resonances in the thermal energy range) vary as 1/
√
E at low

energies. This is commonly referred to as a “1/v energy-dependence,” where v refers to the neutron speed.
Surprisingly, the thermal motion of nuclei does not affect a cross sections with a 1/v energy variation. In
other words, Vnσ̄x(Vn) = VRσx(VR) when σx(VR) ∝ V −1

R .
In stating that the thermal motion of the nuclei follow the Maxwell-Boltzmann distribution, we have

implicitly assumed that all nuclei are free to move independently, effectively as molecules in a gas. Most
nuclei, however, are chemically bonded to other nuclei to form molecules. Molecular motion, including
vibration and rotation, for example, affects nuclear motion, so the preceding treatment is not strictly
valid. The primary regime where this becomes important is in neutron scattering at low energy. There
are treatments to deal with molecular motion that we will not discuss.

Arguably the most important example in reactor physics of where molecular motion effects are im-
portant is in the thermal scattering of neutrons in water. An analysts should be aware that water cross
sections, and hydrogen bound in water in particular, require special evaluations with respect to temper-
ature. When obtaining nuclear data for reactor physics calculation, this “special evaluation” normally
appears as something called a thermal kernel or S(α, β) data that is tabulated alongside all the other
nuclear cross sections.

2.4 Differential Scattering Cross Sections

Up to this point we have considered scattering cross sections only in the sense as they relate to the
probability of a scattering event taking place. In reactor physics analysis, where we want to track the
movement of neutrons through a reactor, we often need more information than this. In particular, if a
neutron scatters we want the ability to predict (in a probabilistic sense) how the scattering event will
affect the neutrons energy and direction.

In general we can describe probabilistic scattering kinematics as the product of two functions. The first
is the microscopic cross section for the scattering reaction, which relates the likelihood that the scattering
event occur. We can multiply the cross section by a probability function describing the probability that,
upon scattering at a certain energy E, the neutron will emerge from the collision with a new energy E′

and a direction modified by some angle θ. We write this as

σn(E → E′, µ) = σn(E)P (E → E′, µ) (95)

where σn(E) is the microscopic cross section for scattering (elastic or inelastic) and P (E → E′, µ)dE′dµ
is the probability that the neutron will scatter to energy E′ (within an interval dE′ through a deviation
cosine µ = cos θ (within an interval dµ). The quantity σn(E → E′, µ) is called the double differential
scattering cross section and is sometimes written as

σn(E → E′, µ) ≡ d2σn(E)

dE′dµ
. (96)
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Example: Double-Differential Elastic Scattering Cross Section, Stationary Target
We previously saw that elastic, isotropic (in CM) scattering off a stationary target leads to the following
relationship between energies E, E′, and CM scattering angle ϕ:

E′n
En

=
V ′2n
V2
n

=
(1 + α) + (1− α) cos(ϕ)

2
(97)

where α = (A− 1)2/(A+ 1)2. From this we see that energy and direction change are directly correlated.
The probability density function for a neutron scattering isotropically through the cone created by angle
ϕ is given by

P (φ) =
1

2
sinϕ, φ ∈ [0, π] . (98)

We see that an increase in ϕ by an amount dϕ causes a decrease in the exiting energy by an mount dE′,
and in particular,

dE′ = −E(1− α) sinϕ

2
dϕ . (99)

Because energy change is directly related to the deviation angle we may write the following expression for
the probability that a neutron will be scattered from energy E to energy E′:

P (E → E′)dE′ = −P (ϕ)dϕ . (100)

Substituting in the eliminating dϕ in favor of dE′, then cancelling the differential, and subsituting the
expression for P (ϕ) leads to

P (E → E′) =
1

E(1− α)
. (101)

What we really want is the probability as a function of energy /and/ angle in the LAB, but we just
saw that these are correlated. We previously derived the following results for the LAB deviation cosine in
this scenario:

µ = cos θ =
1

2
(A+ 1)

√
E′n
En
− 1

2
(A− 1)

√
En
E′n

. (102)

Because energy and angle correlated, the function P (E → E′, µ) is really a one-parameter function, not
two. Thus we may write

P (E → E′, µ) =

 1
E(1−α)δ

(
µ− 1

2 (A+ 1)
√

E′n
En
− 1

2 (A− 1)
√

En
E′n

)
, if αE ≤ E′ ≤ E,

0, otherwise.
(103)

The function δ(x) is the /Dirac delta function/ (see the Appendix for details).

Both σn(E) and P (E → E′, µ) depend on the thermal motion of nuclei and there are methods for
averaging these quantities over that motion similar to what was shown in the previous section, but these
procedures will not be discussed here as they become quite complex, even for the relatively simple case of
elastic scattering.

2.5 References

• Hebert (2009)
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2.6 Problems

1. In general the ratio of the diffusion radius of a nucleus (a) to the neutron wavelength (λ) is much less
than one, i.e. a

λ << 1. Under this assumption, derive an approximate expression for the potential
elastic scattering cross section, σ`p, for s-wave interactions.

2. Derive the Maxwell-Boltzmann distribution as a function of kinetic energy, E = 1
2mA|VA|2 =

1
2mAV

2
A. Start with the Maxwell-Boltzmann distribution written as a function of velocity VA.

Because this is a distribution the change of variables must be done so that p(VA)d3VA = p(E)dE.
(Note that although VA is a vector, the direction of the vector is not important, as all that appears
in the distribution is V 2

A, which is proportional to energy. Thus we may write d3VA = 4πV 2
AdVA.)

3. Plot the Maxwell-Boltzmann distribution as a function of kinetic energy using your results from the
previous problem. Use T = 300 K. Does this plot inform the reasoning behind picking an energy of
around 1 eV as the cutoff for “thermal” neutron energies?

4. Derive Eqn. 85.

2.7 Solutions

1. The potential elastic scattering cross section is given by

σ`p = 4πλ2 (2`+ 1) sin2 φ`. (104)

For an s-wave interaction ` = 0, and φ0 = a/λ. Because a/λ << 1 we can use the small-angle
approximation for sine: sin θ ≈ θ for |θ| << 1. Plugging ` and φ` into the equation and using the
small-angle approximation leads

σ0
p = 4πa2. (105)

Note that this is the surface area of a sphere with radius a.

2. Begin with

p(VA) =
( mA

2πkT

) 3
2

exp

(
−
mAV

2
A

2kT

)
. (106)

and d3VA = 4πV 2
AdVA. Given E = 1

2mAV
2
A, we have dE = mAVAdVA. Thus,

p(VA)d3VA = 2

√
E

π

(
1

kT

)3/2

exp

(
− E

kT

)
dE. (107)

Thus

p(E) = 2

√
E

π

(
1

kT

)3/2

exp

(
− E

kT

)
. (108)

Note that the energy-dependent distribution does not depend on mass!

3 Neutron Slowing Down

3.1 Energy balance equation

If we assume that a reactor is very large with respect to the mean free path of a neutron and consists of
a homogeneous material then we may write a balance equations for the neutron density with respect to
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Figure 5: Fission cross section (blue) and fission spectrum (red) of uranium-235.

energy. In reality, spatial effects will play a role in determining the neutron density, but we will consider
those later. Describing the neutron density with respect to energy alone unveils some important aspects
of reactor physics. The neutron balance equation for neutrons with energy between E and E + dE is

[Σa(E) + Σs(E)]φ(E)dE =

[∫ ∞
0

dE′Σs(E
′ → E)φ(E′) +

χ(E)

k∞

∫ ∞
0

dE′νΣf (E′)φ(E′)

]
dE (109)

where Σa(E) is the macroscopic absorption cross section, Σs(E) is the macroscopic scattering cross section,
Σs(E

′ → E) is the scattering kernel (i.e., Σs(E) multiplied by the probability of a scattering event changing
a neutron’s energy from E′ to E), and Σf (E) is the macroscopic fission cross section. Additionally, χ(E)
is the fission spectrum, which represents the probability that a neutron emitted from fission will emerge
with an energy E, and ν is the average number of neutrons released per fission. The factor k∞ is the
infinite multiplication factor, which is needed to ensure a steady-state solution for the scalar flux, φ(E).

It is presumed that all cross sections and fission parameters are known. Our present goal is then to
solve the neutron balance equation for the energy-dependent flux φ(E). Note that this equation is not an
“energy balance” equation in the sense that it balances the neutron kinetic energy. Rather, it balances
the number of neutrons with a given kinetic energy, namely n(E)dE, which is the number of neutrons
between E and E + dE. The function φ(E), where E is the only independent variable, is often called the
neutron spectrum.

3.2 Characteristic Neutron Energy Ranges

Rather than seeking an immediate solution to this neutron balance equation, we will first conduct a
qualitative exploration of solution. Neutrons are created from fission with a relatively high kinetic energy,
yet the fission cross section tends to be highest at lower (thermal) energies, as shown in Figure 5. In
between there are large discrete capture resonances that the neutrons must escape while slowing down to
thermal energies.

These three energy ranges (fission spectrum, slowing down, and thermal) each impact the neutron
spectrum, φ(E), in qualitatively different ways. We can roughly characterize the spectrum in each range
by introducing some approximations that permit an analytical solution to the neutron balance equation.
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3.2.1 Fission Energy Range

Neutrons are typically emitted from fission with a kinetic energy of 1 to 2 MeV. This is much higher than
the thermal equilibrium energy that is on the order of 1 eV. At these high energies, the rate of neutrons
being created in interval dE from fission is much greater than neutrons being scattered into dE from lower
energies. Thus

φ(E)dE ≈ χ(E)

k∞Σt(E)

∫ ∞
0

dE′νΣf (E′)φ(E′)dE =
χ(E)

Σt(E)
× constant. (110)

Thus the neutron spectrum at high energies, say E > 0.5MeV , is roughly proportional to the fission
spectrum divided by the total cross section.

The fission spectrum can be described by a number of different formulations, one of which is the Watt
spectrum. The Watt spectrum is a probability density that can be written

pWatt(E) =
1

I
sinh
√
bEe−E/a (111)

where I is a normalization constant, and a and b are parameters. For uranium-235,

I = 2.0555, (112)
a = 1, (113)
b = 2, (114)

for E in MeV. Integrating this function reveals that roughly 88% of neutrons are created with an energy
between 0.1 and 4 MeV, and only 1.4% are created with an energy less than 0.1 MeV. The average energy
is 2 MeV and the median is about 1.6 MeV.

3.2.2 Slowing-Down Energy Range

At energies between 1 eV and 50 keV, there are very few neutrons created directly from fission and elastic
scattering is much more important than inelastic scattering. (Why?) The elastic scattering cross kernel
can be written

Σs(E
′ → E) =

{
Σs(E′)
E′(1−α) , E ≤ E′ ≤ E

α

0, otherwise
(115)

where α = [(A− 1)/(A+ 1)]2. If there are J nuclides present then the neutron balance equation becomes

Σt(E)φ(E)dE =
J∑
j=1

[∫ E/αj

E
dE′

Σs(E
′)

E′(1− α)
φ(E′)

]
dE. (116)

Let’s consider the case of neutron slowing down in the presence of hydrogen plus large resonance
aborbers. If the j = 1 nuclide is hydrogen (α = 0) and all the others are quite heavy (α ≈ 1) then we can
write

Σt(E)φ(E) =

[∫ ∞
E

dE′
ΣH
s (E′)

E′
φ(E′)

]
+

J∑
j=2

[∫ E/αj

E
dE′

Σj
s(E′)

E′(1− α)
φ(E′)

]
(117)

≈
∫ ∞
E

dE′
Σs(E

′)

E′
φ(E′) +

J∑
j=2

Σs(E)

α
φ(E) (118)
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where in the second approximation we have used Σj
s(E′)φ(E′)/E′ ≈ Σj

s(E)φ(E)/E for E′ ∈ [E,E/αj ].
This equation can be manipulated to yield (approximately

[
Σa(E) + ΣH

s (E)
]
φ(E) =

∫ ∞
E

dE′
ΣH
s (E′)

E′
φ(E′) (119)

where on the left-hand-side we have used ΣH
s (E) ≈ Σs(E)−

∑J
j=2 Σj

s(E)/α. Differentiating this expression
and defining a new function f(E) =

[
Σa(E) + ΣH

s (E)
]
φ(E) leads to

df

dE
= − ΣH

s (E)

E [Σa(E) + ΣH
s (E)]

f(E). (120)

This equation can be solved using an integrating factor and integrating from E to some arbitrary energy
E1, ultimately leading to

φ(E) =

[
Σa(E1) + ΣH

s (E1)
]
E1φ(E1)

[Σa(E) + ΣH
s (E)]E

exp

[
−
∫ E1

E

Σa(E
′)

[Σa(E′) + ΣH
s (E′)]E′

dE′
]
. (121)

Thus φ(E) varies fundamentally as 1/E with localized perturbations caused by resonances that manifest
in Σa(E) in the denominator of the first term and an overall attenuation arising from the exponential
term, which again is primarily affected by resonances along the energy path from E1 to E.

The fact that the flux will be locally depressed in the vicinity of a large absorption resonance is called
energy self-shielding. The name suggests that because the neutron population is suppressed in a resonance
energy range, the neutrons are naturally “shielded” from the resonance to some degree.

A rough estimate of the number of neutrons that will be absorbed by a given resonance can be obtained
by approximating the number of neutrons that are attenuated by the resonance. Assuming that within
an absorption resonance of width ∆E we will have Σa(E) >> ΣH

s (E) leads to

exp

[
−
∫ E1

E

Σa(E
′)

[Σa(E) + ΣH
s (E)]E′

dE′
]
≈ exp

(
−
∫ E+∆E

E

1

E′
dE′
)

=
1

1 + ∆E/E
. (122)

The first large resonance in uranium-238, for example is located at 6.67 eV with a width of about 0.027
eV. Thus neutrons slowing down through the this resonance would be attenuated by a factor of roughly
0.996, which represents a loss of about 0.4%.

3.2.3 Thermal Energy Range

We have previously noted that free atoms have random energies that obey the Maxwell-Boltzmann distri-
bution, which written in terms of energy is

pMB(E) = 2

√
E

π

(
1

kT

)3/2

exp

(
− E

kT

)
. (123)

We might expect that as neutrons slow down to “thermal” energies they would assume the a similar energy
profile, effectively becoming part of the equilibrium system. This assumption would not be far off in
general.

In fact, in the absence of absorption and a neutron source, the flux becomes

φ(E) = v(E)n0pMB(E), (124)

where v(E) =
√

2E/m and n0 is a normalization constant. To show that this is so requires the principle
of detailed balance, which states that all scattering kernels possess the property

v(E′)Σs(E
′ → E)pMB(E′) = v(E)Σs(E → E′)pMB(E). (125)
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Under the stated assumptions, the neutron balance equation becomes

Σs(E)φ(E) =

∫ ∞
0

dE′Σs(E
′ → E)φ(E′). (126)

Using the property of detailed balance and Eq. (124) in the above equation demonstrates that the
Maxwellian flux given by Eq. (124) is indeed a solution.

Of course assuming that there is no source of neutrons, no absorption and no leakage is a stretch to
say the least. The effects of the slowing-down source, absorption and leakage tend to have the general
effect of “shifting” the Maxwell-Boltzmann distribution up in temperature. Thus one may replace T by
some effective temperature, Teff, in p(E) to obtain a closer match to reality.

There are numerous sophisticated models for predicting the thermal neutron energy distributions, or
one may simply solve the neutron balance equation numerically on a computer. In either approach, an
accurate model should include the effects of molecular and crystalline effects on nuclear motion (when
they exist), as these are important factors at thermal energies.

3.3 Elastically Scattering Through Energy

In the section “Neutron-Nucleus Reactions” we observed that the fact that for a stationary target a neutron
can be scattered from an energy E to an energy E′ ∈ [αE,E] where α = (A−1)2/(A+1)2. In the following
we will derive two quantities that will be useful in discussions resonance absorption: the average energy
loss and the average lethargy loss in elastic collisions. To derive the quantities we need the probability
density function for scattering from E to E′, which we will call P (E′ → E).

3.3.1 Elastic Scattering Energy Change

If we assume a stationary target we know that

E′

E
=

(1− α) + (1− α) cosφ

2
(127)

where φ is the scattering deflection angle in the CM. Thus energy change is correlated to the angle φ. If
scattering is isotropic in CM, then the probability of scattering through deflection angle φ is

P (φ) =
1

2
sinφ. (128)

Because an incremental energy change dE′ is correlated to a incremental scattering angle −dφ, we have

P (E → E′)dE = −P (φ)dφ. (129)

Substituting the derivative of Eq. (127) into this equation leads to

P (E → E′) =
1

E(1− α)
. (130)

3.3.2 Average Energy Loss

The average amount of energy lost in a scattering collision is given by

〈∆E〉 = E −
∫ E

αE
E′P (E → E′)dE′ =

1

2
(1− α)E. (131)

Thus the average amount of energy lost per collision is proportional to the pre-collision energy and the
mass term α.

ENGY 5050, Nuclear Reactor Physics, UMass Lowell



3.4 Resonance Absorption 3 NEUTRON SLOWING DOWN

3.3.3 Average Logarithmic Energy Loss

The average logarithmic energy loss per elastic collision (or equivalent, the average lethargy loss) is given
by

ξ =

∫ E

αE
ln

(
E

E′

)
P (E → E′)dE′ = 1 +

α

1− α
lnα. (132)

Note that hydrogen, α = 0 and the equation can not evaluated directly, but it can be shown that limα→0 ξ =
1. Also note that this value is independent of E.

3.4 Resonance Absorption

To calculate a local neutron spectrum (independent of space) one could solve the slowing-down equation
numerically to an arbitrary degree of accuracy. An analytically exact solution is generally not possible due
to the complex dependence of the cross section on energy, including many closely-spaced and unresolved
resonances. If we consider a very simplistic case, however, we can make some reasonable approxima-
tions that lead to closed-form expressions of the flux spectrum. These approximation are rarely used in
production-level software anymore, but they permit insight that is generally not available from purely
numerical solutions.

Assume that a medium consists of a single moderating material whose scattering cross sections is
much larger than its absorption cross section (ΣM

s >> ΣM
a ) and a resonance isotope. We will consider

the problem of estimating the neutron flux inside of a single resonance within the resonance isotope. The
neutron balance equation in this case can be written

[
Σres
t (E) + ΣM

s (E)
]
φ(E) =

∫ E/αM

E

ΣM
s (E′)φ(E′)

E′(1− αM )
dE′ +

∫ E/αres

E

Σres
s (E′)φ(E′)

E′(1− αres)
dE′, (133)

where we have also assumed that ΣM
s is roughly constant over the energy range of interest. In fact we

may assume that the moderator scattering cross section is roughly equal to the potential cross section of
the moderating isotope.

It was previously observed that the neutron flux tends to vary as 1/E in the resonance range. This
variation of the flux is asymptotically valid, away from resonances peaks. If we normalize the flux so that
φ(E) = 1/E above the resonance currently in question, then substitute this value into the first integral in
the balance equation we have

[
Σres
t (E) + ΣM

s

]
φ(E) =

ΣM
s

E
+

∫ E/αres

E

Σres
s (E′)φ(E′)

E′(1− αres)
dE′. (134)

For the sake of simplicity, we will consider only a single resonance that is well-separated from other
resonances, in which case the SLBW formula is applicable. The practical width of a resonance is a heuristic
measurement for the “reach” of a given resonance in terms of energy. This practical width can be formed
by comparing the potential cross section, σ`p, with σ0 in the SLBW capture cross section. Looking for an
effective width that produces σ0/σ

0
p ≈ 1 leads to the practical width

Γp ≈
√
σ0

σ0
p

Γx,i. (135)

In general the practical width Γp will be larger than the actual width Γx,i. We will use the practical width
only as a rule of thumb in determining how narrow (or wide) a resonance effectively is.
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3.4.1 Narrow Resonance Approximation

If the practical width of a resonance is much smaller than the average energy loss due to elastic scattering
(i.e., Γp << Ei(1 − αM )/2), then it is likely that a neutron will “jump over” the resonance. Thus, as
we did with the moderating integral, we may assume that the flux takes it’s asymptotic 1/E shape in
the resonance integral. We may also assume that the Σres

s ≈ Σ0,res
p , which is independent of energy for

a/λ << 1. This leads to

[
Σres
t (E) + ΣM

s

]
φ(E) =

ΣM
s

E
+

Σ0,res
p

E
. (136)

This is called the narrow resonance approximation and produces the flux

φNR(E) =
ΣM
s + Σ0,res

p

[Σres
t (E) + ΣM

s ]E
. (137)

3.4.2 Wide Resonance Approximation

If the practical width of a resonance is large compared with the average energy loss due to elastic scattering
(i.e., Γp >> Ei(1−αM )/2), then it is likely that a neutron will experience a reaction inside the resonance
peak. In this case we will not assume the flux has it’s asymptotic form, but rather that Σres

s (E′)φ(E′)
E′) ≈

Σres
s (E)φ(E)

E) within the in-scattering range of the resonance material, which is small because αres ≈ 1. This
leads to

φWR(E) =
ΣM
s

[Σres
a (E) + ΣM

s ]E
. (138)

This is known as the wide resonance approximation (which emphasizes the relationship between the prac-
tical resonance width and the average energy loss) or the narrow resonance, infinite mass approximation
(which emphasizes the assumption that αres ≈ 1).

3.4.3 Resonance Integral

Once the spectrum φ(E) has been determined, we may use it to evaluate the total absorption rate due to
the resonance. This information is normally computed as the resonance integral,

Iγ,i =
Rγ,i
N res =

∫ ∞
0

σγ,i(E)φ(E)dE. (139)

The resonance integral is useful for calculating the resonance escape probability and multigroup cross
sections, which we will discuss later.

3.5 Problems

1. Derive the the solution φ(E) using the narrow and wide resonance approximations.

3.6 References

• Stacey

• Duderstadt and Hamilton
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4 Neutron Transport

At this point we have characterized neutron-nucleus interactions and described the physics of a neutron
slowing down from high (fission) energies to low (thermal) energies in the presence of moderators and
resonance absorbers. We will now proceed to a full description of neutron transport, the goal of which is
to describe how neutrons are distributed through space and energy as a function of time.

4.1 Fundamental Concepts and Variables

We know that a scattering reaction will tend to change the kinetic energy of a neutron and the direction
in which it is traveling. Thus our attempt to describe the distribution of neutrons must take into account
space (where neutrons are), energy (how fast they are moving), angle (in what direction they are moving)
and time. This collection of independent variables is called the phase space of neutron transport.

The space parameter will be denoted by the variable r. While it is possible to represent this vector in
any number coordinate systems, we will focus on Cartesian systems so that space can be represented by
vectors of the form r = xi + yj + zk. In three-dimensional (Cartesian) space the differential space element
is a differential volume dV = dxdydz.

A neutrons direction (or angle) at a given point is given by the unit vector Ω. The definition and
properties of Ω is given in the “Mathematical Odds and Ends” appendix accompanying these notes. The
angle Ω can be described in terms of its projections along each of three Cartesian coordinate axes, Ω =
Ωxi+Ωyj+Ωzk, or in terms of the polar and azimuthal angles θ and ϕ, Ω = sin θ cosϕi+sin θ sinϕj+cos θk.
In three dimensions the differential solid angle is dΩ = sin θdϕdθ.

4.1.1 Neutron Density

Because there is such a high density of neutrons in a reactor and their collisions are probabilistic, it is
infeasible to determine the location and velocity of every single neutron, nor would such an abundance
of information be particularly useful. Instead we will attempt to determine the expected number of a
neutrons within differential space, angle and energy elements as a function of time:

n(r,Ω, E, t)dV dΩdt. (140)

The function n(r,Ω, E, t) in this quantity is the neutron angular density. We may also define the neutron
scalar density as the expected number of neutrons in all directions, n(r, E, t) =

∫
4π n(r,Ω, E, t)dΩ.

4.1.2 Neutron Flux

We know that the reaction rate density (i.e., the number of neutron interactions per unit volume per
unit time) is the product of the nuclelar density, the microscopic cross section for the reaction, the neu-
tron speed and the neutron density. The product of the first two parameters is called the macroscopic
cross section, while the product of the latter two parameters is called the neutron flux. If we write the
neutron flux to explicitly include variation with respect to angle then we have the angular neutron flux,
ψ(r,Ω, E, t) = v(E)n(r,Ω, E, t). If we integrate over all angles then we have the scalar neutron flux,
φ(r, E, t) =

∫
4π ψ(r,Ω, E, t).

Knowing the angular and scalar fluxes is valuable because it enables us to compute reaction rates,
including the rate at which energy is produced from fission reactions. An intuitive interpretation of these
functions, however, is not immediately evident. Recall that the neutron speed is the differential path
length divided by a differential unit of time. The product of the neutron density with speed (i.e., flux) is
therefore the total path length traversed by all neutrons per unit volume per unit time. Thus multiplying
flux by the macroscopic cross section (probability of interaction per unit path length) gives us interactions
per unit volume per unit time. The angular flux is the total path length of all the neutrons moving along
a given direction; the scalar flux is the total path length of all the neutrons regardless of direction.
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Table 1: Basic quantities in neutron transport
Angular density n(r,Ω, E, t)
Angular flux ψ(r,Ω, E, t) = v(E)n(r,Ω, E, t)
Scalar flux φ(r, E, t) =

∫
4π ψ(r,Ω, E, t)dΩ

Current J(r, E, t) =
∫

4π Ωψ(r,Ω, E, t)

4.1.3 Neutron Current

If we multiply the angular neutron density by the vector velocity then we get the angular neutron current :
J(r,Ω, E, t) = v(Ω, E)n(r,Ω, E, t). Integrating this variable over all angles provides a vector-valued
quantity which is usually just called neutron current : J(r, E, t) =

∫
4π v(Ω, E)n(r,Ω, E, t)dΩ. Noting

v(Ω, E) = Ωv(E) permits writing the current in terms of the angular neutron flux.
The neutron current is a useful quantity because it allows us to calculate the net rate at which neutrons

are “flowing” through a surface. In particular, the rate at which neutrons with energy E are crossing a
differential surface with area dA and unit normal vector n is given by

dA (n · J(r, E, t)) . (141)

Occasionally it is useful to represent the total number of neutrons passing in to or out from a system
through a surface. At a point, these quantities are called the partial currents. The incoming and outgoing
partial currents can be expressed as follows:

j+(r, E, t) =

∫
n·Ω>0

n ·Ωψ(r, E, t)dΩ→ outgoing partial current, s (142)

j−(r, E, t) = −
∫

n·Ω<0
n ·Ωψ(r, E, t)dΩ→ incoming partial current. (143)

Note that the net number of neutrons passing through this surface (per unit area) then becomes j+−j− =
n · J.

4.2 The Transport Equation

A transport equation for neutrons can be obtained by performing a neutron balance about an element
dV dΩdEdt in phase space. We make the following assumptions

1. Neutrons travel in straight line between collisions.

2. Neutron exists as points in space, with negligible size.

3. Neutron-neutron interactions can be neglected.

4. Neutron-nucleus interactions occur instantaneously.

5. The material is isotropic.

6. When scattering, the deflection of a neutron’s trajectory from Ω′ to Ω is a function of the cosine of
the angle between the original and final unit directions, i.e. Ω′ ·Ω.

We will make several additional assumptions at this point that, while not necessary, are very accurate
and lead to a simpler form of the transport equation.

1. Fission neutrons are emitted isotropically in the LAB.

2. The average number fission neutrons is independent of the energy of the neutron that caused the
fission.
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3. The only reaction that generates neutrons if fission.

In reality, assumptions 2 and 3 will lead to small errors in the transport solution, but typically the cross
sections to account for these effects implicitly. Specifically the quantity νΣf (E) is usually treated as a
single quantity so that the energy variation of ν is embedded in Σf (E). With regards to assumption 3,
some highly excited heavy nuclei may exist two or three neutrons, leading to (n,2n) or (n,3n) reactions.
The additional neutrons in this case can be accounted for by normalizing the overall scattering to the
average number of neutrons emitted, which will be very close to one.

The final form of the transport equation given these assumptions is

1

v

∂ψ

∂t
+ Ω · ∇ψ + Σψ =

∫ ∞
0

dE′
∫

4π
Σs(r, E

′ → E,Ω′ ·Ω)ψ(r,Ω′, E′, t)

+
χ(E)

4π

∫ ∞
0

dE′
∫

4π
νΣf (r, E′)ψ(r,Ω′, E′, t) + qext(r,Ω, E, t). (144)

For completeness, consider the transport equation to be solved for a region V so that r ∈ V . We will also
take E ∈ [0,∞], although in practice a maximum and minimum energy are adopted so that the flux is
negligible outside of the that interval.

As with any mathematical model, we must consider under what conditions our transport equation
has a viable solution. To answer this question rigorously one should turn to the tools and theory of
mathematics. Arguments based on physics intuition, however, will lead largely to the same conclusions
given sufficient clarity of thought. We will therefore focus on intuitive arguments.

4.2.1 Boundary Conditions

As with any differential equation, we must supply appropriate boundary conditions. Let us presently
denote the boundary of V by ∂V . When solving the neutron transport equation for the angular flux,
the boundary condition specifies the number of neutrons entering the system. There are several ways to
provide this boundary source. The simplest is the fixed flux boundary condition, which has the following
form:

ψ(r,Ω, E, t) = ψinc(r,Ω, E, t) (145)

where ψinc is given a function for r ∈ ∂V and Ω · n < 0 with n the outward unit normal vector on the
surface ∂V . If ψinc = 0 then we have the vacuum condition, which means that there are no incoming
neutrons.

Most reactors exhibit a high degree of spatial repetition, fuel rods in an assembly lattice being the
prime example. A common approximation in modeling a single fuel rod is to assume that the lattice
repeats infinitely in the radial directions. Thus each fuel rod looks like every other fuel rod. This form of
symmetry can be exploited by placing mirror boundary conditions known as specular reflection between
the rods. In this type of reflection we have

ψ(r,Ω, E, t) = ψ(r,Ω′, E, t) (146)

where Ω is the incoming direction corresponding to mirror reflection of Ω′ outgoing direction. Mathemat-
ically this means Ω · n = −Ω′ · n and (Ω×Ω′) · n = 0.

Vaccum and specular reflection boundary conditions are by far the most common. Other possible
boundary conditions are white reflection, in which outgoing neutrons are distributed uniformly across all
incoming directions, and periodic boundary conditions, which account for translational and rotational
symmetry.
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4.2.2 Initial Condition

Because the transport equation, as it is written, is time-dependent, we must also supply an initial condition.
The initial condition is simply

ψ(r,Ω, E, 0) = ψ0(r,Ω, E) (147)

with ψ0 a given function for r ∈ V .

4.2.3 Existence of a Steady-State Solution

We often want to determine the “steady-state” flux solution for a system that is in some form of equilibrium.
In general, Eq. (144) may or may not have a steady-state solution. The complicating factor is fission.
If more neutrons are begin created from fission than lost by all capture and leakage, then the chain
reaction will drive the neutron population perpetually upward. If the opposite is true then the neutron
population will rapidly decrease. Thus steady-state is only obtained when there is a precise balance
between production and loss.

If neutron loss (by leakage or capture) is much more likely than neutron production by fission (called
a sub-critical configuration), then we will have a steady-state solution as long as the external source term,
q is non-zero. These problems are called fixed-source problems, and include accelerator systems, radiation
shielding, and sub-critical reactors as a characteristic examples. If q = 0 then there will be only the trivial
solution.

In reactor design and analysis, however, we frequently want to determine the steady-state power
distribution corresponding to a “critical reactor” in which neutron production is exactly balanced by
neutron loss. In this case the external source of neutrons, q(r,Ω, E, t), is either zero or negligible, and the
transport equation becomes

Ω · ∇ψ(r,Ω, E) + Σ(r,Ω)ψ(r,Ω, E) =

∫ ∞
0

dE′
∫

4π
Σ(r, E′ → E,Ω′ ·Ω)ψ(r,Ω′, E′)

+
χ(E)

4π

∫ ∞
0

dE′
∫

4π
νΣf (r, E′)ψ(r,Ω′, E′). (148)

As it is written, Eq. (148) will practically never have a solution. Any imbalance in the transport equation,
whether due to the physical configuration, cross section uncertainties, or numerical error, will cause the
equation to be unsolvable because no corresponding steady-state solution exists. Solvability exists at the
infinitesimal point where all of the cross section values align to produce a precisely balanced system.
Numerically there is no hope in finding this magical point.

We may not be able to model the reactor precisely enough to determine a steady-state solution, but
we can look for a solution that is “close” to a steady-state solution. This is accomplished by introducing a
scaling factor, typically on the fission term. Calling this scaling factor λ the transport equation becomes

Ω · ∇ψ(r,Ω, E) + Σ(r, E)ψ(r,Ω, E) =

∫ ∞
0

dE′
∫

4π
Σs(r, E

′ → E,Ω′ ·Ω)ψ(r,Ω′, E′)

+ λ
χ(E)

4π

∫ ∞
0

dE′
∫

4π
νΣf (r, E′)ψ(r,Ω′, E′). (149)

The factor λ adds a “knob” so that we can dial-in a solution that approximates the reactor’s steady-state,
given that our naive numerical model has no chance of being precise enough. The closer λ is to one,
the closer we are to a legitimate steady-state solution. It is common to call the inverse of λ the effective
multiplication factor, or keff = λ−1, because it represents the rate at which the neutron population would
be increasing (or multiplying) if this system were “real.” Inspection of Eq. (149) reveals that it is in fact
a generalized eigenvalue problem with λ the eigenvalue. The equation may be massaged into a traditional
eigenvalue problem with keff the eigenvalue. We will discuss this further at a later time.
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A final practical consideration is that the eigenvalue form of the transport equation is homogeneous
and linear in the angular flux. This means that the angular flux can be arbitrarily scaled and the solution
remains valid. (This is the typical behavior of eigenvalue problems.) Thus to determine a unique solution,
we must provide an additional constraint. Typically the total reactor power fulfills this requirement.

4.2.4 What just happened?

It is very easy at this point to be temporarily blinded by the sudden onslaught of mathematical technicality
that has attacked our transport equation. It is worth a moments time to consider what happens in a real
reactor so that we remain somewhat oriented with respect to reality. If you have not been previously
exposed to reactor physics or reactor operations (or have not paid attention to such discussions) then
some of the following must be taken initially on faith.

First, in the previous section we painted a very bleak picture of a steady-state reactor being balanced
on a precipice between explosion and stagnation. Commercial reactors, however, are designed to inherently
be quite stable beasts. One of the most important stabilizing factors has already been introduced in these
notes, which is the Doppler broadening of capture cross sections. If a reactor is generating more neutrons
from fission than are being lost, then the neutron population will increase and the fission reaction rate
will follow in lock-step. As power increases temperature will rise. You have seen that increasing the
temperature of an isotope with capture resonance will increase the capture rate of neutrons. This increase
in capture rate will naturally arrest a modest increase in power and bring the system into steady-state at
a naturally-attained equilibrium temperature. The same sequence will happen in the opposite direction
for a decreasing neutron population. A second stabilizing effect occurs when, as in the case of modern
commercial reactors, the coolant serves double-duty as the moderator. As temperature increases, the
moderator density decreases, often leading decrease in the thermalization of neutrons.

We now see that obtaining a “real” steady-state solution would require solving not just the transport
equation, but heat transfer and likely fluid dynamics equations as well. Moreover introducing temperature
(and density) as variables leads to nonlinearities in the transport equation. In short, the not-so-simple
transport equation just become orders of magnitude more challenging to solve. So instead, how about
we hold temperature constant (say at an average value), then solve the transport equation approximately
by scaling fission to account for the fact that we are neglecting stabilizing feedback mechanisms. The
eigenvalue approach should look quite appealing at this point!

4.2.5 Solving the Transport Equation

Finding a closed-form solution of the transport equation is impossible for all but the simplest of cases.
In practice we must adopt both physical and numerical approximations. Following is a partial list of
complications we should expect.

1. Most mathematical theory deals with either partial differential equations or integral equations. The
transport equation is an integro-differential equation containing both an integral and gradient term.

2. The dimensionality of the phase space is quite high. Three dimensions in space, two in angle, one in
energy and one in time leads to a seven-dimensional space in the most general setting. Numerically
this will generate a very large number of unknowns that must be solved.

3. The energy dependence of the cross sections is very complex because of resonances. Representing
these cross sections numerically a very large number of discretization points.

4. The size of virtually all reactors is much greater than the neutron mean-free-path. Thus any spatial
discretization must include a large number of points.

On the other hand, the transport equation is linear, so if we can manage the size of the problem
then we shouldn’t loose too much sleep. Given advances in modern computing, we are able to calculate
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much larger and more accurate transport solutions than ever before. Nevertheless, solving large transport
problems is very challenging. Our goal presently is not to explore the computational approaches to this
problem in any significant detail, but rather present an overview of the approximations and strategies that
are made to solve neutron transport for reactor physics analyses.

4.3 The Multigroup Approximation

In the previous section we examined the behavior of neutrons with respect to the energy variable. The
neutron balance equation we derived there was actually the transport equation for an infinitely large,
homogeneous region. Under those conditions, ∇ψ = 0, and the flux did not depend on angle because of
rotational symmetry. We will now introduce an approximation that will lead to a simpler energy landscape
so that we can devote more attention to spatial variations of the neutron flux.

The multigroup approximation attempts to simplify the energy-dependent description of neutron trans-
port by binning neutrons to “groups” based on their energy. To begin, pick a set of energy group boundaries,

EG < EG−1 < EG−2 < . . . < Eg < . . . < E2 < E1 < E0. (150)

Note that (for historical reasons) E0 is the highest energy, while EG is the lowest energy. Energy group g
is defined by the interval [Eg, Eg−1].

Next, integrate the transport equation over a single energy group. We may use any of variant of the
transport equation. Going with the eigenvalue form [Eq. (149)] produces an equation that can be written

Ω · ∇ψg(r,Ω) + Σg(r)ψg(r,Ω) =

G∑
g′=1

∫
4π

Σg′→g(r,Ω
′ ·Ω)ψ′g(r,Ω

′)dΩ′

+ λ
χg
4π

G∑
g′=1

∫
4π
νΣf,g′(r)ψg′(r,Ω

′)dΩ′. (151)

where we have defined

ψg(r,Ω) =

∫ Eg−1

Eg

dEψ(r,Ω, E), (152)

Σg(r) =

∫ Eg−1

Eg
dEΣ(r, E)ψ(r,Ω, E)∫ Eg−1

Eg
dEψ(r,Ω, E)

, (153)

νΣf,g(r) =

∫ Eg−1

Eg
dEνΣf (r, E)ψ(r,Ω, E)∫ Eg−1

Eg
dEψ(r,Ω, E)

, (154)

χg =

∫ Eg−1

Eg

dEχ(E), (155)

Σg′→g(r,Ω
′ ·Ω =

∫ Eg−1

Eg
dE
∫ Eg′
Eg′

dE′Σs(r, E
′ → E,Ω′ ·Ω)ψ(r,Ω, E)∫ Eg−1

Eg
dEψ(r,Ω, E)

. (156)

The above parameters are called the multigroup constants and Eq. (151) the multigroup transport equa-
tion.

The benefit of the multigroup equation is that if we can calculate the multigroup constants, we can
obtain a flux solution by solving the G coupled group equations for ψg rather than the transport equation
that depends continuously on energy. If G is chosen to be smaller than the number of points required
to represent the most complex cross section (which is often in thousands), then we have simplified the

ENGY 5050, Nuclear Reactor Physics, UMass Lowell



4.4 Numerical Solutions of the Mutligroup Equation 4 NEUTRON TRANSPORT

computational task of solving the transport equation. In practice, G may be be as large as a few hundred
to as few as two.

Of course there is a catch-22 in that we need the detailed flux spectrum, ψ(r,Ω, E), to calculate the
group constants, but if we had the detailed flux spectrum then we could immediately calculate the group
fluxes! This is where an approximation is leveraged to maximize accuracy in the energy variable at the
expense of the spatial variable. Because most reactors feature regular arrays of fuel rods, symmetry can
be used to simplify the transport problem. Often a reactor physics calculations begins by solving the
transport equation with 100’s or 1000’s of energy grid points in an infinite medium (0D), infinitely tall
cylinder (1D) or occasionally a square pin-cell (2D). Reflective boundary conditions around the simplified
problem introduce an approximation, but if the neutron spectrum changes slowly with respect to space then
the approximation is reasonable because the spectrum is only used as a weighting function to generate the
multigroup cross sections. In the past when computing power was scarce, the spectrum was obtained not
by solving the transport equation, but simply by gluing a fission spectrum, a 1/E intermediate spectrum
and a thermal spectrum together.

Once an appropriate spectrum has been used to generate the multigroup constants, one may attempt
to solve the transport equation for more complex geometries because the burden of excessive energy
complexity has been lightened. A single assembly calculation may use tens to a few hundred energy
groups; a full-core calculation may use as few as two energy groups.

4.4 Numerical Solutions of the Mutligroup Equation

The multigroup approximation effectively handles the energy dependence of the transport equation (given a
suitably accurate weighting spectrum for the cross section collapsing.) There are several ways to discretize
the equation with respect to angle. In what follows we will look at the spherical harmonics (or PN )
and discrete ordinates (or SN ) approaches. For simplicity our discussion will be limited to one spatial
dimension. Adopting the z direction (aligned with the k unit direction) as the dimension of choice, the
multigroup transport equation becomes

µ
∂ψg(z, µ)

∂z
+ Σg(z)ψg(z, µ) =

G∑
g′=1

∫ 1

−1
Σg′→g(z, µ0)ψ′g(z, µ

′)dµ′ (157)

+ λ
χg
2

G∑
g′=1

∫ 1

−1
νΣf,g′(z)ψ

′
g(z, µ

′)dµ′. (158)

Note that in obtaining this equation we have set ∂ψ
∂x = ∂ψ

∂y = 0, integrated over all azimuthal angles, and
set µ = cos θ where θ ∈ [0, π] is the polar angle. We have additionally defined µ0 = Ω ·Ω′ = cos θ0 as the
cosine of the scattering deflection angle.

Before presenting the angular treatment of the transport equation, let’s first consider a practical
treatment of of the scattering cross section angular dependence. As discussed in the appendix, the Legendre
polynomials provide a basis for representing functions defined on the interval [−1, 1]. Because θ0 ∈
[0, π], the scattering cross section is just such a function when the position and group indices are fixed.
Specifically, let

Σg′→g(z, µ0) =

∞∑
`=0

2`+ 1

2
Σ`
g′→g(z)P`(µ0) (159)

where P`(µ0) is the `th Legendre polynomial. Multiplying this equation by P`′(µ0), integrating over µ0,
and applying the orthogonality relationship leads to

Σ`
g′→g(z) =

∫ 1

−1
P`(µ0)Σg′→g(z, µ0)dµ0. (160)
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The Σ`
g′→g(z) coefficients are called the scattering moments.

Inserting the scattering kernel expansion into the transport equation provides

µ
∂ψg(z, µ)

∂z
+ Σg(z)ψg(z, µ) =

G∑
g′=1

∞∑
`=0

2`+ 1

2

∫ 1

−1
Σ`
g′→g(z)P`(µ0)ψ′g(z, µ

′)dµ′ (161)

+ λ
χg
2

G∑
g′=1

∫ 1

−1
νΣf,g′(z)ψ

′
g(z, µ

′)dµ′. (162)

Using the addition theorem of Legendre polynomials allows us to write the polynomial µ0 as the product
of polynomials in µ and µ′:

µ
∂ψg(z, µ)

∂z
+ Σg(z)ψg(z, µ) =

G∑
g′=1

∞∑
`=0

2`+ 1

2
Σ`
g′→g(z)P`(µ)

∫ 1

−1
P`(µ

′)ψg′(z, µ
′)dµ′ (163)

+ λ
χg
2

G∑
g′=1

∫ 1

−1
νΣf,g′(z)ψg′(z, µ

′)dµ′. (164)

4.4.1 The Spherical Harmonics Method

The spherical harmonics are a set of functions that provide a basis for representing functions that exist on
a spherical surface. Given that the unit direction Ω sweeps out the surface a sphere, they can be used as a
basis for representing the angular dependence of the neutron flux in three dimensions. In one dimension,
the spherical harmonics can be integrated down to the Legendre polynomials, which provide a polynomial
basis for functions defined on the interval [−1, 1]. The angular flux in one spatial dimension is a function
of the cosine µ, which takes values between -1 and 1; thus the $µ$-dependence of the angular flux may be
represented by a Legendre polynomial expansion.

Specifically, let

ψg(z, µ) =

∞∑
n=0

2n+ 1

2
ψg,n(z)Pn(µ). (165)

Orthogonality of the polynomials reveals that

ψg,n(z) =

∫ 1

−1
ψg(z, µ)Pn(µ). (166)

Before going any further note that we can use this definition of flux moments to simplify Eq. (164):

µ
∂ψg(z, µ)

∂z
+ Σg(z)ψg(z, µ) =

G∑
g′=1

∞∑
`=0

2`+ 1

2
Σ`
g′→g(z)ψg′,`(z)P`(µ)

+ λ
χg
2

G∑
g′=1

νΣf,g′(z)ψg′,0(z) (167)

where we have used the fact that P0(µ) = 1. Now insert the flux expansion into Eq. (167) to obtain

∞∑
n=0

2n+ 1

2

[
µ
∂ψg,n(z)

∂z
Pn(µ) + Σg(z)ψg,n(z)Pn(µ)

]
=

G∑
g′=1

∞∑
`=0

2`+ 1

2
Σ`
g′→g(z)ψg′,`(z)P`(µ)

+ λ
χg
2

G∑
g′=1

νΣf,g′(z)ψg′,0(z). (168)
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Using the recurrence relationship for the Legendre polynomials in the first term leads to
∞∑
n=0

2n+ 1

2

{[
(n+ 1)

2n+ 1
Pn+1(µ) +

n

2n+ 1
Pn−1(µ)

]
∂ψg,n(z)

∂z
+ Σg(z)ψg,n(z)Pn(µ)

}

=

G∑
g′=1

∞∑
`=0

2`+ 1

2
Σ`
g′→g(z)ψg′,`(z)P`(µ)

+ λ
χg
2

G∑
g′=1

νΣf,g′(z)ψg′,0(z). (169)

We will again summon orthogonality to simplify this equation. Multiplying by Pn′(µ), integrating over all
µ, then writing n instead of n′ for notational aesthetic leads to

n

2n+ 1

∂ψg,n−1(z)

∂z
+

n+ 1

2n+ 1

∂ψg,n+1(z)

∂z
+ Σg(z)ψg,n(z) =

G∑
g′=1

Σn
g′→g(z)ψg′,n(z)

+ λχgδn,0

G∑
g′=1

νΣf,g′(z)ψg′,0(z). (170)

Note that this equation represents not one but an infinite series of coupled equations. Because we have
neither infinite time nor infinite resources with which to solve such a set of equations, it is universal
practice to truncate the flux expansion at some finite value, say N . The implicit approximation is that
ψn,g(z) ≈ 0 for n > N . We call the resulting finite sequence of equations the PN equations.

A charming effect of the Legendre polynomial recurrence relation is that each equation is only coupled
to the equations immediately preceding and following it in the n sequence. The index n represents an
increasing order of anisotropy in the angular flux. If the flux were truly isotropic then the solution to the
single equation corresponding to N = 0 would solve the transport equation exactly. The N = 1 solution
adds a component of anisotropy linear in µ. Because the nth Legendre polynomial is a degree-n polynomial,
the nth term in the flux expansion represents an $n$-degree polynomial representation of anisotropy. The
higher values of n are also more oscillatory because the Legendre polynomial Pn(µ) has all n roots in the
interval [−1, 1].

The set of (N + 1) PN equations are not complete until boundary conditions are specified. Each of
the equations is a first-order partial differential equation, thus we require N + 1 boundary conditions. In
one spatial dimension we have two boundaries, and because it seems rational to have the same number of
conditions on each boundary we limit ourselves to even numbers of equations (P1, P3, P5, etc.).

Boundary conditions in PN theory are complicated by the fact that we are not solving for the flux
directly but rather the flux moments. For reflecting surfaces the angular flux should be an even function of
µ, thus the odd flux moments should vanish. (The curious reader may confirm that odd-degree Legendre
polynomials are odd functions on the interval [−1, 1].) This provides the (N + 1)/2 conditions for each
reflecting boundary surface.

If there are no neutrons entering a surface (the vacuum condition) then the angular flux corresponding
to directions entering the system should be zero. It is not possible to rigorously enforce this condition in
PN theory. A reasonable approach, however, is to require that, for example, on the right-most boundary
of a one-dimensional system (say at z = b),∫ 0

−1
Pn(µ)ψg(zb, µ)dµ = 0 (171)

for odd i. In P1 theory, observe that this requirement becomes∫ 0

−1
µψg(b, µ)dµ = 0, (172)
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which is equivalent to requiring the incoming partial current, j−g (zb), to be zero. Expanding the flux we
see that ∫ 0

−1
µ

[
1

2
ψg,0(zb) +

3

2
µψg,1(zb)

]
dµ = −1

4
ψg,0(zb) +

1

2
ψg,1(zb) = 0. (173)

We will revisit this result when derive diffusion theory.

4.4.2 The Discrete Ordinates Method

Rather than expanding the angular flux in a series of Legendre polynomials, the discrete ordinates ap-
proximation to the transport equation attempts a more direct approach of angular discretization. The
method begins by selecting a set ofM discrete directions (or ordinates). In one dimension the only angular
variable is the polar angle, so we may select a set

µ1 < µ2 < . . . < µM

where, as usual, µm = cos θm for a discrete polar angle θm.
We now evaluate the transport equation, Eq. (164), at each of the discrete directions, producing

µm
∂ψg,m(z)

∂z
+ Σg(z)ψg,m(z) =

G∑
g′=1

∞∑
`=0

2`+ 1

2
Σ`
g′→g(z)P`(µm)

∫ 1

−1
P`(µ

′)ψg′(z, µ
′)dµ′ (174)

+ λ
χg
2

G∑
g′=1

∫ 1

−1
νΣf,g′(z)ψg′(z, µ

′)dµ′ (175)

where ψg,m(z) ≡ ψg(z, µm). To complete the discretization we must approximate the angular integrals
appearing in the scattering and fission terms on a discrete basis. The fact that we have already selected
the set of points µi suggests that a numerical quadrature would be appropriate. Thus for each ordinate
µm we assign a corresponding weight wm so that∫ 1

−1
f(µ)dµ ≈

M∑
m=1

f(µm)wm

for a suitably “well-behaved” function f(µ). The transport equation now becomes

µm
∂ψg,m(z)

∂z
+ Σg(z)ψg,m(z) =

G∑
g′=1

∞∑
`=0

2`+ 1

2
Σ`
g′→g(z)P`(µm)

M∑
m′=1

P`(µm)ψg′,m′(z)wm′ (176)

+ λ
χg
2

G∑
g′=1

νΣf,g′(z)

M∑
m′=1

ψg′,m′(z)wm′ . (177)

Eq. (177) is the discrete ordinates transport equation, also known as the SN equation, where N is the
number of discrete directions, which in this case we have called M . The discrete ordinates equation has
been completely discretized with respect to the angular variable. The discrete angular fluxes ψg,m(z) can
be solved by simultaneously solving the GM equations represented by Eq. (177).

The selection of the µm and wm parameters comprising the discrete ordinates approximation has an
important effect on the accuracy of the solution. Selecting these parameters from the Gauss-Legendre
quadrature (where the µm are the roots of the Legendre polynomial PM (µ)) is a common choice that
produces a high order of accuracy.
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a b

zi−1 zi zi+1
zi−1/2 zi+1/2

Cell i

Figure 6: Neutron-nucleus collision in LAB coordinates.

4.4.3 Spatial Discretization of the Discrete Ordinates Equations

At this point we have discretized the energy and angle variables using the multigroup and PN or SN
methods, respectively. The only phase variable that has not been discretized is the spatial variable. In
this section we will complete the phase space discretization of the discrete ordinates equation by introducing
a spatial discretization.

Because we are considering only 1D domains in a Cartesian space, our geometry is simply a closed
interval [a, b]. (Theoretically we could also choose an infinite or semi-infinite interval in which one or both
end points go to infinity. This is sometimes done when studying cosmic particle transport.) The interval
[a, b] can be discretized by defining a set of contiguous, non-overlapping regions whose union is equal to
the interval. This is called a partition of the interval, but it is really just a mathematically formal way of
saying that we chop the interval into lots of little intervals. Let’s call each one of these regions a cell and
define zi as the center of cell i, as shown in Figure 6. The boundaries of cell i we’ll call zi−1/2 (on the left)
and zi+1/2 (on the right) so that the width of the cell is ∆zi = zi+1/2 − zi−1/2. If the cells are numbered
sequentially from 1 to I then we will have z1/2 = a and zI+1/2 = b, the boundaries. We will finally assume
that cross sections are spatially constant within each cell and write Σg(z) as Σg,i for z ∈ [zi−1/2, zi+1/2].

Next integrate the discrete ordinates transport equation (177) over cell i. The result is

µm
[
ψg,m(zi+1/2)− ψg,m(zi−1/2)

]
+ Σg,i

∫ zi+1/2

zi−1/2

ψg,m(z)dz (178)

=

G∑
g′=1

∞∑
`=0

2`+ 1

2
Σ`
g′→g,iP`(µm)

M∑
m′=1

P`(µm)wm′

∫ zi+1/2

zi−1/2

ψg′,m′(z)dz

(179)

+ λ
χg
2

G∑
g′=1

νΣf,g′,i

M∑
m′=1

wm′

∫ zi+1/2

zi−1/2

ψg′,m′(z)dz. (180)

Next we will shift notation by defining ψg,m,i±1/2 = ψg,m(zi±1/2). We will also define the cell-averaged
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flux as ψg,m,i = 1
∆zi

∫ zi+1/2

zi−1/2
ψg,m(z)dz. The transport equation then becomes

µm
[
ψg,m(zi+1/2)− ψg,m(zi−1/2)

]
+ Σg,iψg′,m′,i∆zi (181)

= ∆zi

G∑
g′=1

∞∑
`=0

2`+ 1

2
Σ`
g′→g,iP`(µm)

M∑
m′=1

P`(µm)wm′ψg′,m′,i (182)

+ ∆ziλ
χg
2

G∑
g′=1

νΣf,g′,i

M∑
m′=1

wm′ψg′,m′,i. (183)

Alas, this is a fully discrete form of the transport equation. If we have I spatial cells, however, then
the total number of unknowns for each group and discrete ordinate will be the number of cell-interface
fluxes (minus the incoming boundary) plus the number of cell-averaged fluxes, for a total of 2I. To be
able to solve this set of equations we need to introduce auxiliary equations relating the cell interface and
average fluxes. In the diamond-difference formulation of the discrete ordinates equation we assume the
relationship

ψg,m,i =
1

2

(
ψg,m,i−1/2 + ψg,m,i+1/2

)
(184)

for each cell.

4.4.4 Solving the Discrete Ordinates Equation

Eqs. (183) and (184) provide a sufficient number of linear, algebraic equations to solve for all of the
unknowns ψg,m,i and ψg,m,i±1/2. There is an efficient way to solve these equations short of simply throwing
everything into a gigantic matrix known as sweeping, although to be fair, sweeping is really just a matrix
factorization based as much on intuition as mathematics.

To describe the sweeping algorithm let us temporarily assume that the scattering and fission sources
are known and lumped into an effective source term,

qg,m,i = =
G∑

g′=1

∞∑
`=0

2`+ 1

2
Σ`
g′→g,iP`(µm)

M∑
m′=1

P`(µm)wm′ψg′,m′,i (185)

+ λ
χg
2

G∑
g′=1

νΣf,g′,i

M∑
m′=1

wm′ψg′,m′,i (186)

so that the transport equation becomes

µm
[
ψg,m(zi+1/2)− ψg,m(zi−1/2)

]
+ Σg,iψg′,m′,i∆zi = ∆ziqg,m,i. (187)

Recall that boundary conditions in transport theory consist of specifying the angular flux entering a
system. Thus presently we must specify ψg,m,1/2 for µm > 0 and ψg,m,I+1/2 for µm < 0.

A transport sweep consists of starting at a boundary then solving for all downstream neutron fluxes in
a particular direction. For example if we pick a direction µm > 0 then we should start at the left boundary
and sweep to the right, cell by cell. As we encounter each cell we know from the previous cell the value
of ψg,m,i−1/2. To determine the ψg,m,i we use the diamond difference relation to eliminate ψg,m,i+1/2 from
the transport equation. The result is

ψg,m,i =
qg,m,i∆zi + 2µmψg,m,i−1/2

Σg,i∆zi + 2µm
. (188)
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Once this cell-averaged flux has been computed we may again call on the diamond difference relationship
to calculate the flux on the cell’s right boundary,

ψg,m,i+1/2 = 2ψg,m,i − ψg,m,i−1/2. (189)

The flux ψg,m,i+1/2 is then becomes the left boundary flux of the next cell, and the sweep continues. The
same procedure holds for µm < 0, but the sweep is in the opposite direction.

4.4.5 Inner (Scattering) and Outer (Fission) Iterations

In the previous discussion we assumed that the scattering and fission sources were known. In reality they
are not, as they both depend on the angular flux which is the solution itself. This discrepancy is treated
through a nesting of iterations. Algorithm 1 shows the most common implementation of this nesting, where
inner scattering iterations converge the scattering source and outer fission iterations converge the fission
source. The fission iteration in this case is actually a power iteration, used to converge the eigenvalue λ.
(“Power iteration” refers to a specific numerical method for calculating eigenvalues, not the reactor power.)

Algorithm 1 Transport Solution
1: Initialize ψg,m,i (initial guess)
2: λ(0) = 1.0
3: for j = 1, 2, . . . do . Fission iteration
4: Set qf,(j)g,m,i = λ(j−1) χg

2

∑G
g′=1 νΣf,g′,i

∑M
m′=1wm′ψg′,m′,i

5: Set F (j) = 2
∑I

i=1 ∆zi
∑G

g=1 q
f,(j)
g,m,i

6: for k = 1, 2, . . . do . Scattering iteration
7: Set qs,(k)

g,m,i =
∑G

g′=1

∑∞
`=0

2`+1
2 Σ`

g′→g,iP`(µm)
∑M

m′=1 P`(µm)wm′ψg′,m′,i

8: For each group g, solve TE with qg,m,i = q
s,(k)
g,m,i + q

f,(j)
g,m,i

9: If maxg,m,i

∣∣∣qs,(k)
g,m,i − q

s,(k−1)
g,m,i

∣∣∣ < εs then terminate scattering iter.
10: end for
11: If maxg,m,i

∣∣∣qf,(j)g,m,i − q
f,(j−1)
g,m,i

∣∣∣ < εf then terminate fission iter.

12: Set λ(j) = λ(j−1) F (j−1)

F (j)

13: end for

5 Nuclear Physics in 60 Seconds

Notation: An atomic nucleus is the small, dense core of an atom, consisting of a collection of protons
and neutrons. The number of protons contained within a given nucleus is given by the atomic number, Z,
while the number of neutrons is given by N . The mass number, A, is the sum of the number of neutrons
and protons. A neutral atom, X, is typically written with the A and Z numbers prepended, i.e., AZX, with
the neutron number implicit.

Mass: Masses on the nuclear scale at typically expressed in units of atomic mass units (u), defined so
that the mass of a neutron atom of 12

6 C is exactly 12 u.
Quantum Description: A common and quite accurate quantum description of the nucleus is given by

the shell model, which is analogous to the description of atomic electrons. Neutrons, protons and electrons
are all classified as fermions, which are particles with a spin of 1

2~ that obey the Pauli exclusion principle.
Neutrons and protons in a nucleus reside in discrete energy states and posses angular momentum that also
occurs in discrete amounts. The angular momentum is specified by the positive, integer quantum nunber
` ≥ 0, and the first few angular momentum states are are labeled s, p, d, f , etc, again in analogy to atomic
electrons. The ground state of a nucleus occurs when all of the nuclear particles are in the lowest energy
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a

bc

A

B C

Figure 7: A triangle.

states allowed by the Pauli exclusion principle. An excited state occurs when a nucleon is elevated to a
higher (and unstable) energy level.

6 Mathematical Odds and Ends

6.1 Trigonometric Identities and Relationships

6.1.1 Euler’s Formula

Euler’s formula is given by

eix = cosx+ i sinx (190)

where e is the base of the natural logarithm and i =
√
−1. Many of the standard trigonometric identities

can be quickly derived from this one formula.

6.1.2 Additive Identities

sin (A±B) = sinA cosB ± cosA sinB (191)

cos (A±B) = cosA cosB ∓ sinA sinB (192)

6.1.3 Law of Sines and Cosines

Given the triangle shown in Figure 7, the law of sines states that

a

sinA
=

b

sinB
=

c

sinC
= constant . (193)

The law of cosines states that

c2 = a2 + b2 − 2ab cosC (194)
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6.2 Special Functions

6.2.1 Delta Functions

The Dirac delta function is a generalized function defined by∫ ∞
−∞

δ(x− a)f(x)dx = f(a) (195)

for some function f(x), and

δ(x− a) =

{
0, x 6= a,

undefined, x = a .
(196)

The fact that the Delta function is a generalized function means that it is only really defined with respect
to integration. Pragmatically this presents no difficulty if it used in probability density functions or other
functions that must be integrated to yield physically meaningful results.

The discrete analog of the Dirac delta function is the Kronecker delta, defined

δi,j =

{
0 i 6= j,

1 i = j.
(197)

6.2.2 Legendre Polynomials

The Legendre polynomials are a set of polynomials, {Pn}∞n=0. For a given n, the polynomial Pn(x) is a
polynomial of degree n. For example, the first few Legendre polynomials are

P0(x) = 1,

P1(x) = x,

P2(x) =
1

2

(
3x2 − 1

)
,

P3(x) =
1

2

(
5x3 − 3x

)
,

P4(x) =
1

8

(
34x4 − 30x2 + 3

)
.

The Legendre polynomials are orthogonal over the interval (−1, 1) and satisfy the following orthogo-
nality relationship: ∫ 1

−1
Pn(x)Pm(x)dx =

2

2n+ 1
δn,m, (198)

where δn,m is the Kronecker delta.
The polynomials also satisfy the following two recurrence relations:

(n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0, (199)(
1− x2

) dPn
dx

= −nxPn(x) + nPn−1(x). (200)

The Legendre polynomials form a complete set over the interval [−1, 1]. This means that a bounded,
piecewise-continuous function f(x) may be written as linear combination of the Legendre polynomials.
Namely,

f(x) =

∞∑
n=0

fnPn(x), x ∈ [−1, 1] (201)
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where

fn =
2n+ 1

2

∫ 1

−1
f(x)Pn(x)dx. (202)

The following addition theorem is particularly useful when using Legendre polynomials to describe the
scattering kernel. Given an incident direction Ω and an outgoing direction Ω′, the scattering kernel can be
expressed in terms of relative angle between the vectors Ω and Ω′, let’s call it θ0, which is the deflection
angle. Writing the unit direction vectors in terms of spherical coordinates we have

cos θ0 = sin θ sin θ′ cos
(
ϕ− ϕ′

)
+ cos θ cos θ′ (203)

where θ is the polar angle and ϕ is the azimuthal angle of the corresponding direction vector (either
primed or unprimed). The addition theorem states that under these circumstances a Legendre polynomial
evaluated at cos θ0 can be expressed as

Pn(cos θ0) = Pn(cos θ)Pn(cos θ′) +
n∑

m=1

(n−m)!

(n+m)!
Pmn (cos θ)Pmn (cos θ′) cos

[
m
(
ϕ− ϕ′

)]
(204)

where the Pmn (x) are the associated Legendre polynomials and are not described here. Integrating Pn(cos θ0)
over ϕ or ϕ′ (from 1 to 2π) causes the summation on the right-hand-side to vanish, resulting in

Pn(cos θ0) = Pn(cos θ)Pn(cos θ′). (205)

6.3 The Direction Vector

The unit direction vector can be expressed in terms of a polar angle, θ, and a azimuthal angle, ϕ, as shown
in Figure 8. In a Cartesian coordinates the unit direction vector can be written

Ω = Ωxi + Ωyj + Ωzk (206)

where

Ωx = sin θ cosϕ, (207a)
Ωy = sin θ sinϕ, (207b)

Ωz = cos θ. (207c)

The differential solid angle can be written

dΩ = sin θdϕdθ. (208)

The direction vector is said to subtend 4π steradians, as∫ π

0
dθ sin θ

∫ 2π

0
dϕ = 4π. (209)

For this reason, integration over all solid angles is commonly denoted
∫

4π dΩ. It is common to make the
change of variable θ → µ = cos θ. In this case∫

4π
dΩ =

∫ 1

−1
dµ

∫ 2π

0
dϕ. (210)

It is common for directions to be described probabilistically, given some probability density p (Ω). For
example, if a direction is selected isotropically, then we have

p (Ω) =
1

4π
. (211)
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x

y

z

Ω

θ

ϕ

Figure 8: Description of the unit direction vector.

In one-dimensional problems the isotropic distribution can be reduced to a function of θ alone. This is
done by integrating over the circles of radius sin θ formed by tracing out ϕ over 2π angles for each θ:

p(θ) =

∫ 2π

0
p (Ω) sin θdϕ =

1

2
sin θ. (212)

This distribution, for example, describes isotropic neutron emission in a CM scattering event.

6.4 Numerical Integration Quadrature

6.4.1 Midpoint Rule

Perhaps the simplest quadrature is based on the midpoint rule. This is essentially the method of "rectan-
gles." Given an interval [a, b] and a set of points xi for i = 0, . . . , n with xi−1 < xi, x0 = a and xn = b we
have the following approximate evaluation of an integral:∫ b

a
f(x) ≈

n∑
i=1

(xi − xi−1) f

(
xi + xi−1

2

)
. (213)

If the spacing is uniform with h = xi − xi−1 then we have∫ b

a
f(x) ≈

n∑
i=1

hf (a+ ih/2) . (214)

6.4.2 Gauss-Hermite Quadrature

The Gauss-Hermite quadrature is a form of Gaussian quadrature for approximating integrals of the form∫ ∞
−∞

e−x
2
f(x)dx. (215)

The approximate evaluation of this integral using the quadrature is∫ ∞
−∞

e−x
2
f(x)dx ≈

n∑
i=1

wif(xi) (216)
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where the xi are the roots of the degree-n Hermite Polynomial, Hn(x), and the wi are the associated
weights given by

wi =
2n−1n!

√
π

n2H2
n−1(xi)

. (217)

In Python the appropriate quadrature may be generate by

import numpy as np
(x,w) = np.polynomial.hermite.hermgauss(n)

where n is the degree of the polynomial, x is a numpy array of the ordinates, and w is a numpy array of
the weights.

Matlab does not have a built in a function for computing the quadrature. The following function was
extracted from a function uploaded by Geert Van Damme to Matlab Central File Exchange under a BSD
License.

function [x, w] = GaussHermite(n)
% This function determines the abscisas (x) and weights (w) for the
% Gauss-Hermite quadrature of order n>1, on the interval [-INF, +INF].

% This function is valid for any degree n>=2, as the companion matrix
% (of the n’th degree Hermite polynomial) is constructed as a
% symmetrical matrix, guaranteeing that all the eigenvalues (roots)
% will be real.

% Geert Van Damme
% geert@vandamme-iliano.be
% February 21, 2010

% Building the companion matrix CM
% CM is such that det(xI-CM)=L_n(x), with L_n the Hermite polynomial
% under consideration. Moreover, CM will be constructed in such a way
% that it is symmetrical.

i = 1:n-1;
a = sqrt(i/2);
CM = diag(a,1) + diag(a,-1);

% Determining the abscissas (x) and weights (w)
% - since det(xI-CM)=L_n(x), the abscissas are the roots of the
% characteristic polynomial, i.d. the eigenvalues of CM;
% - the weights can be derived from the corresponding eigenvectors.

[V L] = eig(CM);
[x ind] = sort(diag(L));
V = V(:,ind)’;
w = sqrt(pi) * V(:,1).^2;

7 Probability and Statistics

Consider a real and continuous random variable, ξ. This variable will take a value somewhere on the
interval [a, b], and let the probability of the random variable occurring between x1 and x2 be given by
P [x1 ≤ ξ ≤ x2]. We can define a probability density function, f(x), such that f(x)dx is the probability
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that the continuous random variable, ξ, will have a value between x and x+ dx in the limit of dx→ 0. In
other words,

f(x)dx = P [x ≤ ξ ≤ x+ dx] . (218)

The probability of the random variable ξ having a value somewhere between x1 and x2 is then given by∫ x2

x1

f(x)dx = P [x1 ≤ ξ ≤ x2] . (219)

Because the random variable ξ must take a value somewhere on the interval [a, b], the density function
f(x) must be normalized to unity: ∫ b

a
f(x)dx = 1 . (220)

This normalization guarantees (with probability one) that the random variable will have a value somewhere
in [a, b]. Note that a and b are allowed to go to plus or minus infinity, respectively. The interval [a, b] is
called the support of f(x).

Note that colloquially, the variable x is often referred to as the random variable rather than ξ. Recall
that a random variable does not have a definite value, it is only described by its probability density. One
may reference a point, x, in the probability density function, but this is conceptually distinct from the
random variable itself, ξ. What is often meant in saying that x is a random variable is that x is a value
sampled from the probability density f(x). In this case, the random sample x may be thought of as having
a concrete value randomly selected from the support of f(x) based on the probability density contained
within.

The mean value of a probability density function is defined by

〈x〉 =

∫ b

a
xf(x)dx . (221)

In addition to the probability density function, the cumulative probability distribution function can be
defined as the probability that the random variable ξ will take a value less than or equal to x:

F (x) = P [ξ ≤ x] . (222)

The cumulative distribution can be defined in terms of the density function by

F (x) =

∫ x

a
f(x′)dx′ , (223)

or conversely,

f(x) =
dF

dx
. (224)

Now let’s say that we have a variable y = y(x). If x is a variable sampled from the probability density
f(x) (i.e., it is random), then y will be random as well. We may assume that y could be described by it’s
own probability density, say g(y). In this case the probability of sampling x from f(x) within an interval
dx should be the same as sampling y from g(y) within an interval dy. Thus,

|f(x)dx| = |g(y)dy| . (225)

This leads to the result

g(y) = f(x)

∣∣∣∣dxdy
∣∣∣∣ . (226)

Thus if we know the relationship between x and y, then we can derive the underlying probability density
behind the variable y knowing only the probability density behind x. This is useful for changing the
independent variable of a known probability density function.
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8 CONSTANTS

8 Constants

Speed of light in a vacuum

c = 2.99792458× 108 m/s

Mass of a neutron

m = 1.0086649 u

= 1.67493× 10−27 kg

= 939.57
MeV
c2

Boltzmann constant

k = 1.380650× 10−23 J/K

= 8.61734× 10−5 eV/K

Plank constant

h = 6.626070040× 10−34 J s

= 4.135667662× 10−15 eV s

~ =
h

2π
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