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1 What is a Cross Section?

We have already assumed that neutrons travel along straight trajectories between collisions and argued that
this is indeed a valid assumption within studies of nuclear reactor physics. But how can we characterize
the frequency of collisions for neutrons traveling along a given trajectory? Put another way, if a neutron
starts along a trajectory from a known point, how long should we expect it to travel before it experiences
a collision. This is clearly a problem for probability. Hebert (2009) summarizes the problem nicely.

The probablity for a neutron located at r and moving in a material at velocity Vn to undergo
a nuclear reaction in a differential element of trajectory ds is independent of the past history
of the neutron and is proportional to ds.

In concrete terms, let’s say that we have a neutron that starts moving at a fixed velocity a medium
containing a exactly one kind of nucleus. Then define P [ds] as the probability that the neutron will
experience a collision within a differential distance ds, and consider the following

• We were told (above) that the probability P [ds] is proportional to ds.

• From intuition, we can also convince ourselves that this probability should also be proportional to
the number of "target" nuclei present, so let’s define N as the density of nuclei.
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1 WHAT IS A CROSS SECTION?

From these observations we may write

P [ds] = σNds (1)

The quantity P [ds] is a probability, so it should be unitless. Given that N is a density and ds is length,
we can infer that the proportionality constant, σ, has units of length squared or area. The constant σ
is called the microscopic cross section. It is common to express the microscopic cross section in units of
barns (b) where 1 b = 10−24 cm2.

The product of the first two variables appearing on the right-hand-side of the probability definition is
called the macroscopic cross section, written as

Σ = σN, (2)

which may be interpreted as the probability per unit path-length of a collision. Thus we may write the
probability of a neutron collision over the differential path-length ds as

P [ds] = Σds. (3)

Next, consider a population of neutrons with a density, n. For now let’s assume that all neutrons have
the same speed, but they need not be moving in the same direction. The number of neutrons that will
experience a collision within the differential path-length ds along each of their individual trajectories will
be P [ds] multiplied by the number of neutrons. If we multiply by the density of neutrons rather than
the number of neutrons then we get the (differential) density of neutron collisions within a (differential)
distance ds of collective neutron travel:

dC = Σnds. (4)

Note the units of (collisions) per unit volume.
Because all neutrons are moving at the same speed, Vn, we may relate the distance ds (of "collective

neutron travel") to a time interval dt = ds
Vn

. Thus the density of neutron collisions is dC = ΣnVndt.
Dividing by dt and taking dt → 0 gives us an important quantity in reactor physics, called the reaction
rate density :

R =
dC

dt
= ΣnVn. (5)

Because we have officially taken the limit dt → 0 (and correspondingly ds → 0), this quantity is a
point-wise, instantaneous value.

The product of neutron density and neutron speed, nVn, appearing on the right-hand-side of the
reaction rate density is a ubiquitous quantity in reactor physics, called the scalar flux :

φ = nVn. (6)

We have previously established that there are several different types of nuclear reactions (radiative
capture, elastic and inelastic scattering, etc.) Each type of reaction is represented by unique microscopic
cross section. For a reaction of type x, for example, we may write the corresponding cross section σx.
Multiplying by the nuclide density provides the corresponding macroscopic cross section Σx = Nσx.

If there is more than one type of nuclide present, we may simply add the contributions from each to
obtain macroscopic cross section for the mixture:

Σx =
∑
i

Niσx,i. (7)
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More over we may sum across all reaction types to obtain the total macroscopic cross sections, which is
the probability per unit path-length of any collision:

Σ =
∑
x

Σx. (8)

Example: Derivation of Mean-Free-Path
Now consider a monoenergetic beam of neutrons with uniform velocity Vn impinging normally on the
surface of slab with a total macroscopic cross section Σ. On average, how far will a neutron travel into
the slab before experiencing its first collision?

First construct a balance equation for the uncollided neutron density as a function of x. We know
that the rate of neutron removal (with respect to x) will be the rate of neutron collisions, and there are
no sources of uncollided neutrons inside the slab. Thus,

dn

dx
= −Σn(x). (9)

We can solve this equation to determine

n(x) = n(0)e−Σx. (10)

The probability that a neutron will reach a distance x without experiencing is a collision is thus

p0(x) =
n(x)

n(0)
= e−Σx. (11)

Next, the probability of a neutron experiencing its first collision between x and x+ dx is the product
of (1) the probability of the neutron reaching x and (2) the probability of the neutron colliding between
x and x+ dx:

pc(x)dx = p0(x)Σdx = Σe−Σxdx. (12)

Finally, the average distance to first collision, which we will call λ, may be obtained by taking the
integral

λ =

∫ ∞
0

xpc(x)dx =
1

Σ
. (13)

The quantity λ is called the /mean-free-path/ and, for an infinite, homogeneous medium, is equal to the
inverse of the total macroscopic cross section.

2 Resonance

Because of the quantum nature of reality, which is very important at the nuclear scale, a nucleus is not
allowed to be excited to an arbitrary energy level. Rather a nucleus may only sit at certain discrete energy
levels, at or above its ground state. Nuclei in excited states will seek to return to the stable ground state,
typically though photon emission, although at high enough energy a neutron or even alpha particle may
be emitted. For some nuclei, the additional energy is sufficient to cause fission.

Although each excitation level, say ei, is discrete, it’s value is not precisely defined due to the Heisenberg
uncertainty principle. Rather each excited state is associated with an energy width, γi, that is centered
at ei and related to the average lifetime of the excited state, τi by

γi =
~
τi
. (14)
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Note that the average lifetime τi is equal to the inverse of the decay constant for the excited state.
An excited, compound nucleus at excitation level ei with width γi may have several options for de-

excitation: emitting a photon, a neutron, etc., for example. Each one of these "options" is called a decay
channel. The energy width, γi, of the excited state may be written as a sum of the widths associated with
each possible decay channel:

γi =
∑
x

γi,x, (15)

where x represents a decay channel.
A discussion of the quantum effects surrounding nucleus formation and de-excitation can quickly

become quite involved. While interesting, that discussion is beyond the objectives of our present endeavor.
Thus the following brief sections will only present a high-level summary of the things it might be good to
know as nuclear engineer.

Recall that there is e∗ = eexc + ∆BE of energy available to a newly-created compound nucleus that
has been struck by a neutron. When e∗ is close to an excitation level ei of the compound nucleus–if the
available reaction energy puts the compound nucleus rather precisely into an excited state–then we observe
a resonance condition. A resonance condition means that is very likely that the compound nucleus will be
formed at the excited state corresponding to the ei level. Resonance conditions have a significant impact
on the likelihood that a reaction will take place, and consequently the cross section for that reaction will
be significantly affected.

2.1 Single Level Breit-Wigner Formula

There is a result from quantum mechanics that provides an expression for a reaction cross section in
the vicinity of a resonance. The formula is known as the single level Breit-Wigner Formula (SLBW).
The "single level" qualifier belies the assumption the resonance in question is well-separated from nearby
resonances. Conversely, if two energy states are close enough together that their associated energy widths
(γi γi+1, for example) overlap, then the there will be interference effects between the two states. This will
then lead to more complex expressions for describing the corresponding resonance effects that manifest in
the cross sections.

For a reaction of type x from which there are no emerging neutrons (e.g., radiative capture), the SLBW
may be written

σx(eexc) = σ0
γx,iγi

γ2
i + 4(eexc − ei)2

(16)

where

σ0 = 4πλ2gJ
γn,1(eexc)

γi
, (17)

gJ =
2J + 1

2(2I + 1)
, and (18)

λ =
~√

2eexc

(
Am
A+1

) . (19)

The quantity gJ is a statistical factor expressed in terms of the spin of the target nucleus (I) and compound
nucleus (J). The parameter λ is the de Broglie wavelength of the incident neutron in the CM system.

For an elastic scattering reaction, the SLBW becomes

σe(eexc) = σ`p + σ0

[
2

γi
(eexc − ei) sin 2φ` +

γn,i
γi
− 2 sin2 φ`

]
γ2
i

γ2
i + 4(eexc − ei)2

(20)
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where

σ`p = 4πλ2 (2`+ 1) sin2 φ` (21)

is called the potential cross section. In this expressions the quantity ` is the integer angular momentum
quantum number, which enumerates several types of elastic scattering reactions:

` =


0; s-wave interaction
1; p-wave interaction
2; d-wave interaction
etc.

(22)

Most elastic scattering reactions in thermal reactors will be s-wave interactions, characterized by relatively
low incident neutron energies. Heavy target nuclei may give rise to higher-waver interactions. The first
few φ` shift factors are given by

φ0 =
a

λ
, (23)

φ1 =
a

λ
− tan−1 a

λ
, (24)

φ2 =
a

λ
− tan−1

3a
λ

3−
(
a
λ

)2 (25)

where a is the nucleus diffusion radius, which can be thought of as the "radius of influence" of the nucleus.
(A nucleus does not have a well-defined boundary in the quantum world!)

The expressions so far have been defined with respect to the CM system. Most of us do not live in the
center-of-mass world of nuclear collision; we operate in a world that is stationary with respect to us, i.e.,
the LAB system, and would prefer to work accordingly. The excitation energy eexc in the CM system can
be converted to a LAB energy easily:

Eexc =
A+ 1

A
eexc =

1

2
mnV

2
R. (26)

If we assume that the target nucleus is stationary, then Eexc is simply the initial kinetic energy of the
neutron.

With regard to resonance descriptions, a resonance at ei with a width γx,i for decay channel x in the
CM system becomes the following in the LAB system:

Ei =
A+ 1

A
ei, (27)

Γx,i =
A+ 1

A
γx,i. (28)

The SLBW formulas remain valid in the LAB as long as the lowercase (CM) variables above are replaced
by their uppercase (LAB) counterparts.

We will conclude this section by remarking that in the case of a resonance located at an energy ex,i
above the thermal energy range (i.e., >1 eV). If we assume that that a/λ << 1 then only s − wave
interactions are important. Then using LAB variables, the SLBW formulas become

σx(Eexc) = σ0
Γx,iΓi

Γ2
i + 4 (Eexc − Ei)2 (29)

σe(Eexc) = 4πa2 + σ0
2a

λ

2Γi (Eexc − Ei)
Γ2
i + 4 (Eexc − Ei)2 + σ0

Γn,iΓi

Γ2
i + 4 (Eexc − Ei)2 . (30)
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2.2 Limitations of SLBW

The main assumption of the SLBW was that resonances were well-separated and did not interfere with
one another. In reality this assumption breaks down, especially in heavy target nuclei and high energies
(& 10 keV). There is a more accurate representation of closely-spaced resonances called the multilevel
Breit-Wigner (MLBW) formula. The complexity of this formula increases significantly. The MLBW is,
however, often used in computer codes that calculate neutron cross sections for reactor physics applications.

2.3 Resonance Distributions

The location and density of resonances varies by nuclide and energy. In general both the number and
density of resonances increases with larger nuclides and higher incident neutron energies. Below 1-10 keV
resonances are typically separated enough so that experimentalists can determine the location and width
of the resonances. At higher energies, however, the resonances become so tightly spaced that is impossible,
at present, to distinguish one from the other. We say that these resonances are unresolved, or lie in the
unresolved resonance range, in contrast to the resolved resonance range at lower energies.

3 Non-Stationary Nuclei

In much of our initial discussion on neutron-nuclear interactions we assumed that the target nucleus was
stationary (VA). Short of being at absolute zero temperature, this is never the case in reality. If the speed
of the neutron is much larger than the speed of the target nucleus this ma be a good assumption, however,
so our previous discussions are justified. At neutron energies below 1 eV the random, thermal motion of
the nuclei is not negligible.

3.1 Averaging the Microscopic Cross Section

The velocities of nuclei in thermal equilibrium is described by the Maxwell-Boltzmann probability density
function,

p(VA) =

(
mA

2πkT

) 3
2

exp

(
−
mAV 2

A

2kT

)
(31)

where

k is the Boltzmann constant,

T is the absolute temperature of the material,

m is the neutron mass,

A is the ratio of the nuclear mass to the mass of a neutron.

p(VA)d3VA is the probability for a nucleus to have a velocity within an interval d3VA of VA.

We know that for a fixed neutron speed Vn the reaction rate for reaction type x is defined by

Rx = Nσx(Eexc)VRn, (32)

where N and n are the densities of the nuclei and neutrons, respectively. Note that because we are not
assuming a stationary nucleus, we use the relative speed, VR, which is the speed at which the neutron
is approaching the target, VR = Vn − VA. Also recall that the excitation energy in the LAB is Eexc =
A+1
A eexc = 1

2mV
2
R (where m is the neutron mass), so we may use Eexc and VR interchangeably as the

independent variable in the microscopic cross section. Thus for a fixed neutron speed Vn the reaction rate
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3.1 Averaging the Microscopic Cross Section 3 NON-STATIONARY NUCLEI

depends on the speed of the target nucleus which is random. To account for this thermal motion of the
nuclei, we can calculate an average reaction rate over the probability distribution of target nuclei:

〈Rx〉 =

∫ ∞
0

p(VA)Nσx(|Vn −VA|) |Vn −VA|nd3VA , (33)

where the integral is taken over each of the velocity components. From this average reaction rate we can
define a new effective microscopic cross section averaged over the motion of the nuclei, which for neutron
with speed Vn is:

σ̄x(Vn) = 〈σx(|Vn −VA|)〉 =
1

Vn

∫ ∞
0

p(VA)σx(|Vn −VA|) |Vn −VA| d3VA . (34)

Plugging in the Maxwell-Boltzmann distribution into this expression yields

σ̄x(Vn) =
1

Vn

(
mA

2πkT

) 3
2
∫ 2π

0
δ

∫ ∞
0

dVxyVxy

∫ ∞
−∞

dVz exp

(
−
mAV 2

A

2kT

)
σx(VR)VR . (35)

The expression can be simplified somewhat without approximation. To begin, consider the velocity of the
target nucleus decomposed into a radial (xy) and axial (z) component:

VA = Vxy cos ηi + Vxy sin ηj + Vzk (36)

where η ∈ [0, wπ], and

d3VA = VxydηdVxydVz . (37)

The primary quantity that needs to be evaluated for the averaging is the relative speed. If we define the
coordinate reference frame so that the k unit vector is pointing in the direction of neutron travel then we
have

VR = |Vn −VA| =
√
V 2
xy + (Vn − Vz)2 . (38)

Additionally,

V 2
A = V 2

xy + V 2
z = V 2

R − V 2
n + 2VnVz . (39)

Finally, changing the variable of integration of the first integral from Vxy to Eexc using the relationship

Eexc =
1

2
m
[
V 2
xy + (Vn − Vz)2

]
(40)

(which requires changing the bounds of the Vz integration) and integrating over Vz yields

σ̄x(E) =
1

∆
√
π

∫ ∞
0

dEexc

√
Eexc

E
σx(Eexc)

{
exp

[
− A

kT

(√
Eexc −

√
E
)2
]

exp

[
− A

kT

(√
Eexc +

√
E
)2
]}
(41)

where

∆ = 2

√
EkT

A
and E =

1

2
mV 2

n . (42)
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3.2 Averaging Resonance Cross Sections

Accounting for the thermal motion of nuclei in resonance cross sections is at the heart of the Doppler
broadening effect, which is an important player in both steady-state and transient reactor analysis. In the
case of an isolated, narrow resonance above the thermal neutron energy range we can take several further
steps to simplify Eq. (41).

1. If the neutron has a kinetic energy significantly above the average kinetic energy of the nuclei then

Eexc ≈ E and we may assume that exp

[
− A
kT

(√
Eexc +

√
E
)2
]
<< exp

[
− A
kT

(√
Eexc −

√
E
)2
]
.

Consequently we will take

exp

[
− A

kT

(√
Eexc +

√
E
)2
]
≈ 0 . (43)

2. Because we have assumed that the resonance is narrow we may assume that the peak energy, Ei, is
much greater than the resonance width, Γi.

3. When Eexc is much different than E, the first exponential term in Eq. (41) will rapidly tend to a
small number. Thus we may generate a Taylor expansion of

(√
Eexc −

√
E
)
in E with Eexc = E+ ε

and ε << E.

4. We assume s− wave interactions and use lab variables so that Eqs. (29) and (30) may be used.

5. Assume that Γx,i and Γi are constant. (In reality there is some variation with energy.)

Applying all of these assumptions and approximations leads to

σ̄x(E) =
1

∆
√
π
σ0(E)

Γx,i
2

∫ ∞
−2Ei/Γi

dv
1

1 + v2
× (44)

exp

{
− A

kT

Γ2
i (v − u)2

16E

[
1− 1

2

(
Γi(v − u)

2E

)
+

5

16

(
Γi(v − u)

2E

)2

+ . . .

]}
(45)

where

u =
2

Γi
(E − Ei) and v =

2

Γi
(Eexc − Ei) . (46)

The lower integration limit can be replaced by −∞ because Γi << Ei, leading to the following result:

σ̄x(E) = σ0(E)
Γx,i
Γi

ψ(u, α, β) (47)

where

ψ(u, α, β) =
1

β
√
π

∫ ∞
−∞

dv
1

1 + v2
exp

{
−(v − u)2

β2

[
1− 1

2
α(v − u) +

5

16
α2(v − u)2 + . . .

]}
(48)

and

α =
Γi
2E

and β =
2∆

Γi
. (49)

This expression ψ(u, α, β) is called the generalized Doppler psi function. A common simplification is to
assume that E ' Ei, in which case,

β =
2ΓD
Γi

(50)
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where the Doppler width has been defined as

ΓD = 2

√
EikT

A
. (51)

Using the same mathematical treatment, a similar expression can be derivied for the SLBW elastic
scattering resonance formula. The result is

σ̄e(E) = 4πa2 + σ0(E)
2a

λ
φ(u, α, β) + σ0(E)

Γn,i
Γi

ψ(u, α, β) (52)

where

φ(u, α, β) =
1

β
√
π

∫ ∞
−∞

dv
v

1 + v2
exp

{
−(v − u)2

β2

[
1− 1

2
α(v − u) +

5

16
α2(v − u)2 + . . .

]}
(53)

Let’s take a moment to summarize what has been done in the preceding. We began with the microscopic
cross section σx that is proportional to the probability of a neutron-nucleus interaction and depends
on (equivalent) the excitation energy Eexc or the relative speed of the neutron-nucleus pair VR. Either
parameter is complicated by the fact that the nuclei are moving in essentially a random fashion, describable
by the probability function p(VA). At thermal equilibrium, this probability function is the Maxwell-
Boltzmann distribution, so we can derive an expression for the microscopic cross section that is averaged
over the thermal motion of the nuclei. This was the main result.

Remember that the Maxwell-Boltzmann distribution is a function of the temperature of the material.
Thus as the temperature changes so will the averaged microscopic cross sections. This phenomenon is
called the Doppler broadening effect.

The φ− ψ Doppler functions derived in this section relied on several important assumptions that will
not always hold up in reality. When situations arise in which these functions are not appropriate one may
resort to approximate numerical evaluations of Eq. 41 directly. This is commonly done in practice.

3.3 Other Considerations

Many absorption-type cross sections (without resonances in the thermal energy range) vary as 1/
√
E at low

energies. This is commonly referred to as a “1/v energy-dependence,” where v refers to the neutron speed.
Surprisingly, the thermal motion of nuclei does not affect a cross sections with a 1/v energy variation. In
other words, Vnσ̄x(Vn) = VRσx(VR) when σx(VR) ∝ V −1

R .
In stating that the thermal motion of the nuclei follow the Maxwell-Boltzmann distribution, we have

implicitly assumed that all nuclei are free to move independently, effectively as molecules in a gas. Most
nuclei, however, are chemically bonded to other nuclei to form molecules. Molecular motion, including
vibration and rotation, for example, affects nuclear motion, so the preceding treatment is not strictly
valid. The primary regime where this becomes important is in neutron scattering at low energy. There
are treatments to deal with molecular motion that we will not discuss.

Arguably the most important example in reactor physics of where molecular motion effects are im-
portant is in the thermal scattering of neutrons in water. An analysts should be aware that water cross
sections, and hydrogen bound in water in particular, require special evaluations with respect to temper-
ature. When obtaining nuclear data for reactor physics calculation, this “special evaluation” normally
appears as something called a thermal kernel or S(α, β) data that is tabulated alongside all the other
nuclear cross sections.

4 Differential Scattering Cross Sections

Up to this point we have considered scattering cross sections only in the sense as they relate to the
probability of a scattering event taking place. In reactor physics analysis, where we want to track the
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movement of neutrons through a reactor, we often need more information than this. In particular, if a
neutron scatters we want the ability to predict (in a probabilistic sense) how the scattering event will
affect the neutrons energy and direction.

In general we can describe probabilistic scattering kinematics as the product of two functions. The first
is the microscopic cross section for the scattering reaction, which relates the likelihood that the scattering
event occur. We can multiply the cross section by a probability function describing the probability that,
upon scattering at a certain energy E, the neutron will emerge from the collision with a new energy E′

and a direction modified by some angle θ. We write this as

σn(E → E′, µ) = σn(E)P (E → E′, µ) (54)

where σn(E) is the microscopic cross section for scattering (elastic or inelastic) and P (E → E′, µ)dE′dµ
is the probability that the neutron will scatter to energy E′ (within an interval dE′ through a deviation
cosine µ = cos θ (within an interval dµ). The quantity σn(E → E′, µ) is called the double differential
scattering cross section and is sometimes written as

σn(E → E′, µ) ≡ d2σn(E)

dE′dµ
. (55)

Example: Double-Differential Elastic Scattering Cross Section, Stationary Target
We previously saw that elastic, isotropic (in CM) scattering off a stationary target leads to the following
relationship between energies E, E′, and CM scattering angle ϕ:

E′n
En

=
V ′2n
V2
n

=
(1 + α) + (1− α) cos(ϕ)

2
(56)

where α = (A− 1)2/(A+ 1)2. From this we see that energy and direction change are directly correlated.
The probability density function for a neutron scattering isotropically through the cone created by angle
ϕ is given by

P (φ) =
1

2
sinϕ, φ ∈ [0, π] . (57)

We see that an increase in ϕ by an amount dϕ causes a decrease in the exiting energy by an mount dE′,
and in particular,

dE′ = −E(1− α) sinϕ

2
dϕ . (58)

Because energy change is directly related to the deviation angle we may write the following expression for
the probability that a neutron will be scattered from energy E to energy E′:

P (E → E′)dE′ = −P (ϕ)dϕ . (59)

Substituting in the eliminating dϕ in favor of dE′, then cancelling the differential, and subsituting the
expression for P (ϕ) leads to

P (E → E′) =
1

E(1− α)
. (60)

What we really want is the probability as a function of energy /and/ angle in the LAB, but we just
saw that these are correlated. We previously derived the following results for the LAB deviation cosine in
this scenario:

µ = cos θ =
1

2
(A+ 1)

√
E′n
En
− 1

2
(A− 1)

√
En
E′n

. (61)
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6 PROBLEMS

Because energy and angle correlated, the function P (E → E′, µ) is really a one-parameter function, not
two. Thus we may write

P (E → E′, µ) =

 1
E(1−α)δ

(
µ− 1

2 (A+ 1)
√

E′
n

En
− 1

2 (A− 1)
√

En
E′

n

)
, if αE ≤ E′ ≤ E,

0, otherwise.
(62)

The function δ(x) is the /Dirac delta function/ (see the Appendix for details).

Both σn(E) and P (E → E′, µ) depend on the thermal motion of nuclei and there are methods for
averaging these quantities over that motion similar to what was shown in the previous section, but these
procedures will not be discussed here as they become quite complex, even for the relatively simple case of
elastic scattering.

5 References

• Hebert (2009)

6 Problems

1. In general the ratio of the diffusion radius of a nucleus (a) to the neutron wavelength (λ) is much less
than one, i.e. a

λ << 1. Under this assumption, derive an approximate expression for the potential
elastic scattering cross section, σ`p, for s-wave interactions.

2. Derive the Maxwell-Boltzmann distribution as a function of kinetic energy, E = 1
2mA|VA|2 =

1
2mAV

2
A. Start with the Maxwell-Boltzmann distribution written as a function of velocity VA.

Because this is a distribution the change of variables must be done so that p(VA)d3VA = p(E)dE.
(Note that although VA is a vector, the direction of the vector is not important, as all that appears
in the distribution is V 2

A, which is proportional to energy. Thus we may write d3VA = 4πV 2
AdVA.)

3. Plot the Maxwell-Boltzmann distribution as a function of kinetic energy using your results from the
previous problem. Use T = 300 K. Does this plot inform the reasoning behind picking an energy of
around 1 eV as the cutoff for “thermal” neutron energies?

4. Derive Eqn. 44.
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