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1 Trigonometric Identities and Relationships

1.1 Euler’s Formula

Euler’s formula is given by

eix = cosx+ i sinx (1)

where e is the base of the natural logarithm and i =
√
−1. Many of the standard trigonometric identities

can be quickly derived from this one formula.

1.2 Additive Identities

sin (A±B) = sinA cosB ± cosA sinB (2)

cos (A±B) = cosA cosB ∓ sinA sinB (3)

1.3 Law of Sines and Cosines

Given the triangle shown in Figure 1, the law of sines states that
a

sinA
=

b

sinB
=

c

sinC
= constant . (4)

The law of cosines states that

c2 = a2 + b2 − 2ab cosC (5)
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a

bc

A

B C

Figure 1: A triangle.

2 Special Functions

2.1 Delta Functions

The Dirac delta function is a generalized function defined by∫ ∞
−∞

δ(x− a)f(x)dx = f(a) (6)

for some function f(x), and

δ(x− a) =

{
0, x 6= a,

undefined, x = a .
(7)

The fact that the Delta function is a generalized function means that it is only really defined with respect
to integration. Pragmatically this presents no difficulty if it used in probability density functions or other
functions that must be integrated to yield physically meaningful results.

The discrete analog of the Dirac delta function is the Kronecker delta, defined

δi,j =

{
0 i 6= j,

1 i = j.
(8)

2.2 Legendre Polynomials

The Legendre polynomials are a set of polynomials, {Pn}∞n=0. For a given n, the polynomial Pn(x) is a
polynomial of degree n. For example, the first few Legendre polynomials are

P0(x) = 1,

P1(x) = x,

P2(x) =
1

2

(
3x2 − 1

)
,

P3(x) =
1

2

(
5x3 − 3x

)
,

P4(x) =
1

8

(
34x4 − 30x2 + 3

)
.

The Legendre polynomials are orthogonal over the interval (−1, 1) and satisfy the following orthogo-
nality relationship: ∫ 1

−1
Pn(x)Pm(x)dx =

2

2n+ 1
δn,m, (9)
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3 THE DIRECTION VECTOR

where δn,m is the Kronecker delta.
The polynomials also satisfy the following two recurrence relations:

(n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0, (10)(
1− x2

) dPn
dx

= −nxPn(x) + nPn−1(x). (11)

The Legendre polynomials form a complete set over the interval [−1, 1]. This means that a bounded,
piecewise-continuous function f(x) may be written as linear combination of the Legendre polynomials.
Namely,

f(x) =
∞∑
n=0

fnPn(x), x ∈ [−1, 1] (12)

where

fn =
2n+ 1

2

∫ 1

−1
f(x)Pn(x)dx. (13)

3 The Direction Vector

The unit direction vector can be expressed in terms of a polar angle, θ, and a azimuthal angle, ϕ, as shown
in Figure 2. In a Cartesian coordinates the unit direction vector can be written

Ω = Ωxi + Ωyj + Ωzk (14)

where

Ωx = sin θ cosϕ, (15a)
Ωy = sin θ sinϕ, (15b)

Ωz = cos θ. (15c)

The differential solid angle can be written

dΩ = sin θdϕdθ. (16)

The direction vector is said to subtend 4π steradians, as∫ π

0
dθ sin θ

∫ 2π

0
dϕ = 4π. (17)

For this reason, integration over all solid angles is commonly denoted
∫
4π dΩ. It is common to make the

change of variable θ → µ = cos θ. In this case∫
4π
dΩ =

∫ 1

−1
dµ

∫ 2π

0
dϕ. (18)

It is common for directions to be described probabilistically, given some probability density p (Ω). For
example, if a direction is selected isotropically, then we have

p (Ω) =
1

4π
. (19)

In one-dimensional problems the isotropic distribution can be reduced to a function of θ alone. This is
done by integrating over the circles of radius sin θ formed by tracing out ϕ over 2π angles for each θ:

p(θ) =

∫ 2π

0
p (Ω) sin θdϕ =

1

2
sin θ. (20)

This distribution, for example, describes isotropic neutron emission in a CM scattering event.
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Figure 2: Description of the unit direction vector.

4 Numerical Integration Quadrature

4.1 Midpoint Rule

Perhaps the simplest quadrature is based on the midpoint rule. This is essentially the method of "rectan-
gles." Given an interval [a, b] and a set of points xi for i = 0, . . . , n with xi−1 < xi, x0 = a and xn = b we
have the following approximate evaluation of an integral:∫ b

a
f(x) ≈

n∑
i=1

(xi − xi−1) f
(
xi + xi−1

2

)
. (21)

If the spacing is uniform with h = xi − xi−1 then we have∫ b

a
f(x) ≈

n∑
i=1

hf (a+ ih/2) . (22)

4.2 Gauss-Hermite Quadrature

The Gauss-Hermite quadrature is a form of Gaussian quadrature for approximating integrals of the form∫ ∞
−∞

e−x
2
f(x)dx. (23)

The approximate evaluation of this integral using the quadrature is∫ ∞
−∞

e−x
2
f(x)dx ≈

n∑
i=1

wif(xi) (24)

where the xi are the roots of the degree-n Hermite Polynomial, Hn(x), and the wi are the associated
weights given by

wi =
2n−1n!

√
π

n2H2
n−1(xi)

. (25)

In Python the appropriate quadrature may be generate by
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4.2 Gauss-Hermite Quadrature 4 NUMERICAL INTEGRATION QUADRATURE

import numpy as np
(x,w) = np.polynomial.hermite.hermgauss(n)

where n is the degree of the polynomial, x is a numpy array of the ordinates, and w is a numpy array of
the weights.

Matlab does not have a built in a function for computing the quadrature. The following function was
extracted from a function uploaded by Geert Van Damme to Matlab Central File Exchange under a BSD
License.

function [x, w] = GaussHermite(n)
% This function determines the abscisas (x) and weights (w) for the
% Gauss-Hermite quadrature of order n>1, on the interval [-INF, +INF].

% This function is valid for any degree n>=2, as the companion matrix
% (of the n’th degree Hermite polynomial) is constructed as a
% symmetrical matrix, guaranteeing that all the eigenvalues (roots)
% will be real.

% Geert Van Damme
% geert@vandamme-iliano.be
% February 21, 2010

% Building the companion matrix CM
% CM is such that det(xI-CM)=L_n(x), with L_n the Hermite polynomial
% under consideration. Moreover, CM will be constructed in such a way
% that it is symmetrical.

i = 1:n-1;
a = sqrt(i/2);
CM = diag(a,1) + diag(a,-1);

% Determining the abscissas (x) and weights (w)
% - since det(xI-CM)=L_n(x), the abscissas are the roots of the
% characteristic polynomial, i.d. the eigenvalues of CM;
% - the weights can be derived from the corresponding eigenvectors.

[V L] = eig(CM);
[x ind] = sort(diag(L));
V = V(:,ind)’;
w = sqrt(pi) * V(:,1).^2;
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http://www.mathworks.com/matlabcentral/fileexchange/26737-legendre-laguerre-and-hermite-gauss-quadrature/content/GaussHermite.m
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