THE MONTE CARLO
METHOD

Chapter 7

7-1 INTRODUCTION

In thc':rcatment of deterministic computational methods contained in the
fo_reg_omAg chapters, the computing errors are systematic. Aside from uncer-
tainties in the cross section data, they arise not only from the discretization
of the time-space-angle-energy phase space for numerical computation byt
also f{om the fact that the present state of the art does not, with rare
cheptmn,_p;mxit the full representation of three-dimensional configurations
in deterministic transport computations. Hence the errors introduced b
re.fprese_ming three-dimensional configurations by simplified one- or twc{
dimensional models are of paramount importance, and much of the effort in
deterministic methods development is directed toward the related problems
of computer memory, time, and accuracy encountered in extending de-
terministic methods to treat large multidimensional problems.

In contrast, Monte Carlo methods now in existence are capable of
treating very complex three-dimensional configurations.''® Moreover, the
continuous treatment of energy, as well as space and angle ohv’iates
d:scrcu;auo_n errors such as result, for example, from the use of multigroup
approximations. Hence for a given set of cross section data, the errors in
Mont'e _Carin Fa]cu]alions take the form of stochastic uncertainties, Before
examining their properties, however, we must first outline the procedure one
goes t?l:oggh in carrying out a Monte Carlo calculation.

In its simplest form, Monte Carlo consists of simulating a finite number.
say N, of particle histories through the use of a random number, or, morf:
correctly, pseudo random number generator.>!' In each particle history
r:fndf)m pumbers are generated and used to sample appropriate probability
distributions for scattering angles, track length distances between collisions,
and so on. For simplicity we consider here a fixed source problem in a
nonmultiplying medium with only capture and elastic scattering. Assuming
that the problem is time-independent, each history is begun by sampling the
source distribution to determine the particle’s initial energy, position, and
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direction. After stochastically determining the number of mean free paths
the particle will travel before colliding, the material region and point of
collision are determined. By sampling cross section data, it is determined
with which nuclide the particle has collided and whether the collision is a
capture O a scattering reaction. If it is capture, the history is terminated,
put if it is scattering, the distribution of scattering angles must be sampled
to give a new direction. Then, in the case of elastic scattering, a new energy
is determined by conservation of energy and momentum. With the energy,

osition, and direction after the collision thus specified the foregoing
procedure is repeated for successive collisions until the particle is absorbed
or escapes from the system.

Suppose the purpose of the particle tracking is to calculate the expecta-
tion or mean value ¥ of some quantity. This might be a flux, current, escape
probability, or any number of other quantities. Our estimale of such a
quantity would then take the form of the mean of N samples,

1 N
2=5 X X (7-1)
n=1

where x, is the contribution of the nth history to that quantity. Thus as the
Monte Carlo calculation proceeds, we tally the x, due to each history in
order to calculate the estimated or sample mean % at the end of the
calculation. When fluxes or similar quantities are of interest, £ typically is
given in terms of the number of collisions, the total track length distance
traveled, or other properties related to the individual histories.

The question immediately arises as to how good an estimate our sample
value % is to the true mean value X. As seen in Section 7-4, the uncertainty
in & decreases with increasing numbers of histories, in most cases in
asymptotic proportion to N ~1/2  Moreover, for a fixed number N of
histories, estimates with the least uncertainty are most often obtained for
quantities to which all or at least a substantial fraction of the histories
contribute. Hence the average flux over the entire problem domain 15 a
relatively easy quantity to estimate, since every—or nearly every—particle
history contributes to it. On the other hand, the fraction of particles
penetrating a thick shield is much more difficult to calculate with any
precision. For example, if the shield provides an attenuation of 10%, then
only about one of each million histories contributes to the result! Such
quantities, to which only very exceptional histories contribuie, can still be
calculated successfully using Monte Carlo techniques. This is possible,
however, only when the strict analog simulation of particle histories de-
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288 The Monte Carlo Method

scribed above is abandoned in favor of more powerful stochastic methods
that serve to reduce the uncertainty in one or a few gquantities. Variance
reduction techniques by which this is accomplished are discussed in Section
7-6.

The foregoing discussion directs us back toward the comparison of
Monte Carlo and deterministic methods. For unlike deterministic methods
stochastic methods can be extended in a relatively straightforward manner
to complex three-dimensional configurations. On the other hand, they are of
relatively less value when one requires the detailed distribution of a depen-
dent variable, such as spatial profiles of flux or power, even when relatively
simple one- or two-dimensional geometries are involved. The reason for this
may be viewed as follows. In Monte Carlo, the flux or other quantities are
normally not calculated at a point. Rather they are estimated from the
number of collisons, particle track lengths, or some other quantity in some
incremental volume AVAQAE of phase space. Hence if one wanted a
detailed spatial distribution of the scalar flux, the domain of the problem
would have to be divided in many small AV and the flux estimated in each
of these cells. However, as the AV are taken smaller to improve the spatial
resolution of the results, the fraction of the N histories contributing to the
flux in any one cell decreases rapidly. Accordingly, the statistical uncer-
tainty in the result may grow rapidly to unacceptable levels, even when a
large number of histories is used. While it is often possible to use powerful
stochastic techniques to reduce this uncertainty when only one or a few
quantities are being estimated, this is usually not the case when comprehen-
sive information is required about the details of the particle distribution.
Thus Monte Carlo calculations may not be as appropriate as deterministic
methods in these cases.

In the preceding paragraphs, an effort has been made to sketch qualita-
tively some of the properties of Monte Carlo methods. In what follows we
examine the method in more detail by first reviewing the necessary probabil-
ity distribution laws and then formulating the particle simulation and
standard tally procedures for analog Monte Carlo. The estimate of error
and the role of variance and the central limit theorem are then discussed.
Nonanalog or variance reduction methods for fixed source problems are
then discussed.

For clarity, each of these topics is introduced within the context of
monoenergetic transport in a simple one-region solid. For once they are
understood, it is relatively straightforward to incorporate the energy vari-
able, and the discussion of the spatial tracking of particles through complex
multiregion systems falls more naturally into place. We then conclude the
chapter with a discussion of criticality calculations using the Monte Carlo
Method.
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7-2 PROBABILITY DISTRIBUTION FUNCTIONS

In this section we first examine probability distribution functions of one
random variable® '* and examine techniques for sampling the resulting
distribution. We then examine probability distributions in two variables in
order to discuss independence and conditional probabilities.

Functions of a Single Random Varlable

We introduce probability distributions by first considering a random vari-
able x. By random variable we mean a variable that takes on particular
values with a frequency that is determined by some underlying probability
distribution. In our considerations, x is typically some property of a particle
history, such as a flight distance, scattering angle, or escape probability, that
may take on a range of values. We define

P{a < x < b) = probability that x will have a value
between a and b

There are two functions that are essential to Monte Carlo calculations.
These are the probability density function and the cumulative probability
distribution, sometimes referred to simply as the distribution function.

The probability density function f(x) is defined by the limit of

f(x)Ax = P{x < x" < x + Ax}, (7-2)

as Ax — 0. Thus f(x)Ax is just the probability that x* will take on a value
between x and x + Ax. Clearly we must have f(x) = 0, and

fbf{x}dx=1’{a <x <b). (13)

If x may take on any real value between — oo and + o0, we require that the
probability density function be normalized by

f_'” f(x)dx =1. (1-4)

On the other hand, if the values of x are restricted to between x and x*,
then we require normalization over the restricted domain

j:‘_';(x) dx = 1. (7-5)
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The cumulative probability distribution function, defined by
F(x)=P{x' <=x}, (7-6)

is the probability that the random variable x’ is less than or equal to x.
From our definition of f(x) we have for a random variable that can take on
only real values,

F(x) =f_xmf{x’) dx’. (7-7)

From this we see that
lim F(x) = F(e0) = 1, (7-8)
_!'lr_n F{x)=F(-) =0, (7-9)

and using Egs. 7-3 and 7-7, we have
P{la<x'"<b}=F(b) - Fla). (7-10)
Finally, it is often more convenient to write Eq. 7-7 in the differential form

dF(x)
o = f(x). (7-11)

The relationship between f{x)and F(x) is shown in Fig. 7-1.
To make use of f(x) or F(x) in Monte Carlo calculations we first must
introduce the rules for transformation of random variables. Suppose

y=y(x) (7-12)
is a function of the random variable x. If g( y)dy is the probability that y

is between y and y + dy, and f{x)dx is the probability that x is between
x and x + dx, the probability density functions g(y) and f(x) must satisfy

1g(y) dyl =1/ (x) dxl, (7-13)

or since g(¥) = G and f(x) > 0,

g(y) =f(x)

dx
pa g (7-14)
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In Chapter 1 we encountered such transformations, for example, in convert-
ing from speed (x = v) to energy (y = E) distributions of neutrons.

Now suppose we consider one very particular function, y = F(x) of the
random variable x, where F(x) is the cumulative probability distribution.
Then Eq. 7-14 becomes

&(F) =f(x)

dx
aF ‘ (7-15)

If we now use Eq. 7-11 to evaluate the derivative on the right, we obtain for
this particular transformation simply

g(F)=1, 0sF<l (7-16)

Since g(F) is just the probability density function of the random variable
F, this equation just states that the probability of F taking on a value
between £ and F + dF is just equal to dF. Thus F is uniformly distributed
between zero and one.

We may now show the relevance of these relationships to Monte Carlo
calculations. Random number generators—or more correctly pseudo ran-
dom number generators— available on digital computers provide sequences
of numbers, £, that are uniformly distributed between zero and one.!! We
may therefore use such a generator to sample uniformly distributed F(x) in
an unbiased manner:

F(x)=§. (7-17)

Thus by repeatedly calling the random number generator for values of ¢
we obtain an unbiased distribution of F{x) values. It is the distribution of x
and not of F{x), however, that we need to sample. Therefore, after each call
to the random number generator we must perform the inversion

x=F@E)™". : (7-18)

Indeed the inversion of the cumulative probability distributions representing
physical processes is central to accurate and economical Monte Carlo
simulation of particle transport. A number of techniques may be used to
perform this inversion. In what follows, we carry out some examples that
are relevant to particle transport problems.

Distribution Sampling

First, suppose we want to generate a series of random numbers that are
distributed according to the number of mean free paths that particles will
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travel between collisions. From Egs. 1-5 through 1-7 we kr_lgw Lhal‘ if
0 < x < oo is the distance in mean free paths, then the probability density

function is
flx) =€, (7-19)
and the cumulative probability distribution is
F(x)=1—-¢" (7-20)

Physically, f(x)dx is the probability that a particle starting at x= 0 wi_ll
make a collision between x and x + dx, while F(x) is the probability l!m it
will make a collision within the distance x. For this simple relationship we
may perform the inversion of Eq. 7-18 directly to obtain

x= —In(1 - &). (7-21)

Moreover, if £ is uniformly distributed between 0 and 1 so will be 1 — £, so
that we simply write

x= —Iné. (7-22)

Aside from this straightforward evaluation of probability distributions by
inversion there are alternative methods that may prove to bc‘bcr_jeﬁcia],
particularly if the inverse of F(x) is costly to obtain or if ) f{{c) is given as
numerical data. We illustrate two of these methods: the rejection technique
and numerical evalvation. Suppose that f(x)dx is the fraction of source
particles born between x and x + dx. If F(£)"! is costly to evaluate we
may consider the rejection technique in which such evaluation is replaced by
the generation of additional random numbers.

Suppose that 0 < x < a and 0 < f(x) < fiq- We lher_l deﬁng x'=x/a
and f(x) = f(ax")/fpax- A graph of f(x’) would then fit in a unit square as
shown in Fig. 7-2. To obtain the distribution of x” and therefore of x we
choose pairs of random numbers £, ad £, uniformly distributed between
zero and one. We let x = £, and then ask, “Is £, < f(£)?" If it is, we use
x=§1f & > f(¢,), we reject x’ and choose another pair of random
numbers. In this way the number of random numbers chosen and not
rejected between x’ and x’+ Ax’ is just proportional to f(x) :Sft' as
required. Note that we need not evaluate F(£)"'. On the other hand, if the
area under the curve

fu Yax f(x) (1-23)
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Figure 7-3 The (&) probability density function and (b) cumulative probability distribution
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Flgure 7-2 Scaled probability density function.

is small compared to unity, most of the random number pairs will be
rejected and this procedure will become quite inefficient.

A third procedure may be used in the event that the function is given as
numesical data from a histogram, as shown in Fig. 7-3a. The corresponding
F(x) will be a continuous piecewise linearly increasing function as shown in
Fig. 7-3b. Thus F(x) may be shown to have the form

Fx) = sl = 5B - 9Bl x<xss,
(7-24)
1 T T T T T 1 T T T T T L
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functions constructed from discrete data.
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where

= ¥ Bl (1:25)

i'=1

Hence to obtain x = F~'(£) indirectly we first pick a uniformly distributed
random number {. We search to determine which interval £ is in. After
finding the interval F_, < § < F, we set F(x)=¢ in Eq. 7-24 and solve
for x:

o (x, - xi—l)e_xi'ﬁ—l_{'_xhlﬁ‘

F-F. S

Thus far we have considered only continuous sampling procedures. We
also have need for discrete sampling, where we need to know not the values
of x but only the answer to a question such as “Does a collision take place
in a certain region?” or *Does a collision result in fission, capture, elastic
scattering, or inelastic scattering?” To obtain our answer with a random
number generator we simply note that

g=0,+o, +o +0, (7-27)

and divide the unit line into intervals of length o,/0, 0 /0, 0,/0, 0, /0 as
shown in Fig. 7-4. We then simply choose a random number { uniformly
distributed between zero and one and determine into which of these
intervals it falls.

Functions of Two Random Varlables

Probability distributions may also be defined as a function of more than one
random variable.*'2 For example, if we have two random variables x and y

e 0, /0 = oo ———=

a— 0, /0 “’rh o o lo oo —

5 1.0
E

Figure 7-4 A unit line representation of the conditional probabilities for various types
of neutron interactions.
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then we may define a joint probability density function
Plxsx' <x+Ax,y<y <y+Ay)=[f(x,p)AxAy. (7-28)

The normalization for the joint probability density function is
o0 oo
[T ax [ dyfix,y)=1 (7-29)

since both x and y must lie between —oc and +oo. If we integrate over
only one of the variables, we obtain

g(x) =f: dyf(x, ), (7-30)

h(y) =f_:dxf(x.y). (7-31)

These qualities are referred to as the marginal probability densities of x and
y respectively. Also associated with the joint probability density function
f(x, y) is a joint cumulative probability distribution

P{x'<x,y' <y} =F(x,y) (7-32)

which may be written as
X ¥
Fx,p)=[ ax [ ay'f(x.y). (7-33)
- oo ]

In Monte Carlo calculations these bivariate distributions normally take
one of two limiting forms either with x and y independent of one another
or with x conditional on the value of y. If the joint probability density
function is separable in the form

f(x,p) = fi(x)f(»), (7-34)

then x and y are said to be independent.

An example of independence occurs in choosing the direction of particles
produced or scattered isotropically in the laboratory system. The production
is proportional to the solid angle 4%:

f(f)da =cde (7-35)

where C is a constant. Since /4 = 1, we must have C = f(£2) = 1. Now,
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dS may be written in terms of (#, w), the polar and azimuthal coordinates

_ dfsinfdw _ (dp\(de :
ag - 43n0de _(2h)(2e), (7-36)

where g = cosf. Note that normalization of Eq. 7-35 requires that f(g, w)
= 1/{4n). Clearly Eq. 7-36 is in the form of Eq. 7-34,

f(p0) = fi(w)fi(w), (1-37)

where f,(p) =} and f,(w)=1/(27). Hence p and  are to be sampled
independently. We may use Eq. 7-18 with analytical inversion to detennine
the particle direction from

f-‘=‘2E1" 1,

where £, and §,, are uniformly distributed independent random numbers.
Two random variables x and y may also be related by a conditional
probability distribution. Thus

P(x < x' < x+ x|y} =f(xly) Ax (7-39)

w =27t (7-38)

is just the probability that x will lic between x and x + Ax given the
condition that a particular value y is taken by the second random variable.
The conditional probability density function of x, given y, is defined in
terms of joint and marginal distributions,

f(x, )
h(y) ’

where h(y) is defined by Eq. 7-31.

As an application of conditional probabilities that we use in Section 7-5,
consider neutrons emitted as shown in Fig. 7-5 at a distance y from the
outer surface of a solid, ¥. The solid is assumed to be a purely absorbing
material, We may calculate the conditional probability f(x|y) that a neu-
tron emitted as shown will travel a distance between x and dx in the solid,
given that the distance to the surface is y. Since the neutron history may be
terminated by either of two mechanisms—collision or escape—the proba-
bility density function will have two contributions.

For x < y the probability that a neutron will travel 2 distance between x
and x + dx is the same as in Eq. 7-19; for example, the probability density
that the neutron will collide between x and x + dx is

h(y)#0, (7-40)

f(xly) =

f(x|y) = se™"%, x <y (7-41)

-
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Figure 7-5 Streaming path for neutrons emitted a distance y from the surface of a
solid.

The probability that the neutron will collide before escaping is just

j;’dxf(xiy] L (7-42)

And hence the éscape probability is

i fr dxf(x|y) = e™. (7-43)
0

Hence there is a probability e that a neutron will travel exactly a
distance y in the solid. This discrete probability may be combined with Eq.
7-41 through the use of a Dirac delta and Heavyside functions to obtain the
conditional probability density function traveling a distance in the solid x,
given a boundary at distance y:

f{xly)=ue'“H(y—x) +e 6 (x—y), x=0, (7-44)

where

0, x=<0
Ra={Tr L35 (7-45)
is the Heavyside function, and, of course, f(x]y)=0forx <0Q.

The marginal density function h(y) of the path lengths to the surface
will depend on the space-angle distribution in which neutrons are emitted as
well as on the size and shape of the solid. For any path length distribution
h{y) we may write Eq. 7-44 as

f(x,3) = h(y)(xly), (7-46)
and it is easily shown that Eq. 7-40 holds for f(x, y)-
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7-3 ANALOG MONTE CARLO SAMPLING

With the information we have gained regarding distributions of random
variables we are now prepared to construct a simple analog Monte Carlo
game. For the present we restrict ourselves to monoenergetic transport in a
solid with isotropic scattering and space-independent cross sections. While
the general treatment of energy and of complex multiregion systems gives
Monte Carlo much of its power, for now some of the statistical considera-
tions can be made more transparent using this simplified problem. The
energy variable will be added in a straightforward way, and the geometrical
tracking of particles through complex configurations is taken up in Section
7-1.

Tracking Procedure

Suppose the source distribution is S(x, y, z). Then by generating three
random numbers, the technique of the preceding section can be used to set
the starting point in space of the history. Two more random numbers used
in conjunction with Eq. 7-36 then determine the particle direction. Equation
7.22 may then be used to determine the number of mean free paths traveled
before the next collision. With this information and the cross section, the
x, y, z position of the first collision is determined. If the particle passes out
of ¥, the problem domain, in less than the calculated number of mean free
paths, it has escaped, and the history is terminated. If it collides within V,
then a random number is generated, and if § < ¢o,/0, the particle is
absorbed and the history is terminated. If £ > ¢,/0, the particle is scattered.
The foregoing procedure is repeated for each independent history, starting
again with the generation of two random numbers to determine the particle’s
direction after collision. This cycle of determining the direction, distance
traveled, next collision point, and type of collision is repeated until the
particle either escapes from the system or is absorbed. The geometry of the
solid enters the calculation in determining whether a boundary is closer than
the distance to collision, that is, whether a collision occurs within the solid.

The analog Monte Carlo simulation consists of repeating the foregoing
procedure for N independent histories. As referred to earlier, the result of
the calculation usually consists of a sample mean,

% =% 3 (7-47)

where x is some property of the histories.

iy
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Tallles

Since the histories are random, x also is a random variable. It does not in
general coincide with the random variables that are sampled in producing
the histories: the scattering angles, positions, and distances between colli-
sions. Rather, x most often is related to scalar flux, current distribution,
escape probability, or one of the other dependent variables that are sought
from the solution of the transport equation. Our task then is to ask which of
the properties that we have available from the simulation of random particie
histories should be tallied in order to calculate the scalar flux, current, or
other parameters of interest.

For scalar flux the two most widely used tallies result from the relation-
ship between collision density and scalar flux and from the definition of
scalar flux in terms of total neutron track length, both discussed in Chapter
1. Suppose that we want to calculate the average scalar flux ¢ in some
volume ¥ where the total cross section is 6. Then since ¢ is the collision
density; , the mean number of collisions in ¥ per unit time, is

& = Vag. (7-48)
Hence for the Monte Carlo simulation we may write

= T =
¢ = _L"/_A-cs (?-49]

where € is the mean number of collisions, normalized to one source particle.
The random variable whose mean we want to calculate is thus ¢, the mean
number of collisions per neutron history in ¥. If we normalize our calcula-
tion to a source strength of one neutron, we then have a sample estimate of
[

a1

E=5 Yo, (7-50)
where ¢, is the number of collisions made in ¥ during the nth history. Cur
sample estimate of the scalar flux is then

" 11
* = Vg N Lo (7-51)

A shortcoming of this estimate of the scalar flux lies in the fact that only
particles that collide in V' will contribute to the collision estimator ¢. We
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next discuss the path length estimator for which every particle that passes
through ¥ contributes, whether or not a collision occurs. Recall from
Chapter 1 that the scalar flux may be defined as the total track length
traversed by all particles per unit volume per unit time. Hence

=3l (7-52)

where [ is the mean track length normalized to one source particle. If we
have a Monte Carlo simulation of N particles, we therefore estimate the
mean value / of the random variable [ by

] = ';IG };“,.f,,, (7-53)

where [, is the track length in ¥ of the nth particle. Note that /, may
consist of more than one contribution since a single particle may pass
through the volume ¥ more than once. From Egs. 7-52 and 7-53 we then
have as our path length flux estimator

o 11
6= Vﬁg""‘ (7-54)

We would also like to be able to estimate particle currents, for if currents
can be determined, escape probabilities and other particle balance proper-
ties follow immediately. Suppose we want to calculate the mean value of the
current crossing surface A in the # direction,

A=A T), (7-55)

where J, and J _ are the mean values of the partial currents in the positive
and negative directions. We may write

AT, =p* and A-J=p", (7-56)
where it are the mean numbers of particles passing through the surface per

second in the positive and negative directions respectively. These quantities
can be estimated from our Monte Carlo sample as

pietyps 1)

where p;" and p; are the number of passages through the surface A made

!
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by the nth particle history in the positive and negative direction respec-
tively. We have

5 s 11
Jy= ol J==<=Yop 7-58
it . A N? (7-38)

B
=~

and

j=J,-J " (7-59)

is an approximation to the net current.

It is also possible to calculate the average scalar flux over a surface by
using the relationship among angular flux, scalar flux, and current, which is
given in Chapter 1. It may be shown that the value of ¢ on A may be
estimated from

|

= 2.5 (7-60)

A -
=

&=

=

where §, is the number of crossings of the nth neutron, each weighted by
11/, v{h‘crc p = Q- i is the direction cosine of the particle with respect to
the positive normal to the surface. Thus if there were / crossings in the nth
history,

e

e

A difficulty arises if one must calculate the flux over a very small volume
or surface, as is the case, for example, when it is desired to determine the
response of a “point” detector in a system. The foregoing tallies become
useless, since if the volume is very small no histories are likely to collide in
it, or even to pass through it. In such circumstances there are two alterna-
tives. One may use an adjoint Monte Carlo calculation in which particles
are emitted from the detector volume,™'* or one may resort to one of the
more subtle tallying techniques for the estimate of the flux at a point.™4-1¢
We defer discussion of the use of the adjoint equation unti! Section 7-6;
estimates of the flux at a point and some of the tallies are treated in Section
7-7.

Before proceeding, it is important to note that it is common practice to
normalize Monte Carlo results to a source of one particle, while in steady-
state deterministic transport calculations the source is normally given in
terms of particles per second. Thus the foregoing tallies have units of cm ™2
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rather than particles/cm?/sec as in deterministic calculations. For steady-
state calculations, however, the correspondence is clear. The results of the
Monte Carlo calculation are just multiplied by the number of particles
produced per second; the magnitudes of the tallies are then correct, and the
units become particles/cm?/sec.

7-4 ERROR ESTIMATES

In the preceding section we indicated how to use a number of random
variables to estimate the scalar flux and current in analog Monte Carlo
calculations. The question now arises as to how much error the sample
estimate ¢ or J is likely to have in relation to the true values of the mean ¢
or J. To make an estimation of the statistical uncertainty of our results, we
must go back to the properties of a random variable, introduce the concepts
of expectation values and variance, and utilize the central limit theorem to
arrive at an error estimate.

In the following discussion we designate the random variables ¢, I, p*,
p, ¢ used in the preceding section to estimate flux or current as x. For a
particular simulation in principle there exists a probability density function
f(x) for each of these estimators. Of course we can never determine this
function exactly unless the problem is so simple that it can be solved
analytically; otherwise an infinite number of particle histories would be
required. Estimating the properties of f(x), however, leads in turn to an
estimate of the error in f.

The functional dependence of f(x) on x may have different forms
depending on which of the estimators is under consideration. For example,
the collision and surface crossing estimators ¢, and p,” and p, can take on
only integer values. Hence the probability density function has the form

f(x)=YXps(x—i), (7-62)

where
Tr=1, (7-63)

while the coefficients p, determine the distribution. A special case of Eq.
7-62 is the binomial estimator

f(x) = pb(x) +[1 = poJo(x = 1), (7-64)

where the estimator can take on only values of zero and one. This would be
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a4 The Monte Carlo Method

the case, for example, with the collision estimator ¢ in a pure absorber
problem, for then each history would result in either zero or one collision.

The path length estimator / and the surface flux estimator { resuit in
continuous f(x) distributions with 0 < x < oo for/and 0 = |x| < oo for {.
In many Monte Carlo problems mixed probability distributions also occur.
If some of the neutrons do not contribute to a particular quantity, there will
be a delta function at x = 0, but at the same time those neutrons that do
contribute may result in a continuous distribution, as is the case with the
path length estimator. Such distributions are discussed in detail in Section
7-6.

Expectation Values

Suppose that x is a random variable, for example, some property of a
Monte Carlo history. The expectation value of x is defined as

Elx]= [ xf(x) dx (7:65)

where f(x) is the probability density distribution. Qualitatively, it is the
mean value of x that we would expect to achieve if we repeated a Monte
Carlo calculation infinitely many times. Moreover, if we drew random and
independent samples, x,, X,,...,x,, from f(x), the expectation value of
any one x, would be

E[x,] = E[x]. (766)

This expression states that the average value of x . 15 equal to the expecta-
tion or true mean value

%= f_:xf{ x) dx. (7-67)

Thus the expectation value of % in Eq. 7-1 may also be shown to be equal
to X:

” ¥ & 1 g =
E[z]=E % Exn]=ﬁ );,]E[x"}=£'[x]=x. (7-68)

=1

Thus X is said to be an unbiased estimator of X.

The foregoing results do not imply, however, that x, or even & will be
equal to ¥. What is needed is a measure of the spread in values of % about
¥. To do this we must first introduce some functions of a random variable.*
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Suppose that g(x) is a real function of the random variable x. The
expectation value of g(x) is then defined by

Elg(x)l == " s(x)/(x)ax. (7-69)

Corresponding to Eq. 7-66 if we draw x,, x,, ..., x, independently from
f(x), then

Elg(x,)] = E[g(x)]. (7-10)
Moreover, we note that if g is a linear combination
3{3‘]=C181(1)+C232(X)' (-"‘71)

where C; and C, are constants, then
E[g(x)] = CaE[&{x)] + CZE[SZ{X”- (7-72)
These definitions may be generalized to more than cne random variable.

For example, if f(x, y) is the joint probability density function for x and y,
the expectation value of a function g(x, y) will be

Elgx ) = [ ax [* drg(ep)f(xy). (1)

Moreover, choosing random variables x, and y,. from f{x, y) we have
Flg(x, )] = E[g(x, )] (7-74)
Yarlance

To estimate the spread of values of x, and eventually of %, about X we
introduce a particular function; the second moment about the mean

g(x) = (x ~ )" (7-75)
Then by using Eq. 7-69, the variance is defined to be
o2(x)= E[(x= %] = [7 ax(x - )'1(x). (7-76)
-0
This expression may be simplified by substituting

(x — %) = x? - 2x% + ¥° (7-77)
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346 The Monts Carlo Method

into the definition to obtain
o}(x) = [~ dxx¥f(x) —2x " axxf(x)+ 5 daxf(x) (7-78)
or simply
o(x) =x2— %2, (1-79)

where

= f_“‘;dnﬂf(x). (7-80)
The variance, or more particularly the standard deviation,

o(x) = (x- 2)"/%, (7-81)
provides a measure of the spread of x about the mean value X.

We may now express the variance of % in terms of the variance of x. We
define

o¥(%) = E[(x - x)]. (7-82)
Hence
(%) = E[(%{- "Z:;lx,, - zﬂ
_ F[{ %Ejl(x, - i)}z]. (7-83)

Since we may expand the square of the sum as

(T2 =L lxa = 2 + T 5y = D)y = 9), (789

Eq. 7-83 becomes
2(8) =L £ &[(x, - 2] + L EEE[(x, - $)xy - 5
o NZ ) L Nz e n n' »

(7-85)
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where we have used the fact that the expectation value of the sum is equal to
the sum of the expectation values.'> Expanding the first term yields

[E(x, - 2] = E[x2] - 2%E[x,] + 2. (7-86)
Then utilizing Eq. 7-66 we have
E[(x, — %)} =%~ %2 = o%(x). (7-87)

If x, and x,., n # n’, are drawn independently from f(x), then the second
term may be shown to vanish:

E[(X" - i}(‘rn' - E)] . Eixnxn'] - }E[‘xn] = i‘E'-[":w'] + i:za
(7-88)
but since E[x,] = E[x,]= X, we have
E[(x, - )(x, = B)] = E[x,x,] - 7. (7-89)

If x, and x,. are both independent samplings of f(x), however, the
definition of independence in Eq. 7-34 leads us to

Jlx,x7) = f(x)f(x) (7-90)
and thus

E[x,x,] = [fj;xf(x)dxr -1, (7-91)

causing E[(x, — ¥)(x; — X)] to vanish, Thus combining Egs. 7-85 and
7-87, we obtain the desired result:

oi(%) = ?:702(:(}, (7-92)
Thus the standard deviation is given by

o(%) = i (7-93)

This result may be interpreted as follows: o(x) is a measure of the spread
of individual x, drawn from a probability density distribution f(x) about
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318 The Monta Carlo Method

X. If we use % constructed from N values of x, according to Eq. 7-1 to
estimate X, then the spread in our results—if we repeated the calculation for
£ many times—of X about X is proportional to o(x) and falls off as the
square root of the number of histories in the sample.

In order to estimate the spread in ¥ we must also be able to make an
unbiased estimate o?(x) from a finite number of histories, an unbiased
estimator being one with the correct expectation value. In this case the
sample variance defined by

§?= N 1 1 Z (xn - i)z (7'94)

n=1

can be shown to meet the condition E[S?] = o%(x) as follows. First

1
E[5?] = 7 —3E

L{x<4 )’]. (7-95)

n=1

By writing x, — £ = (x, — ¥) = (& — X) and using the definition of %, it
may be shown that

N N

Y (x,— %)= X (x,- %)= N(x - %)". (7-96)

n=1 n=1

Thus
N
£l = | L Elo =] - w7 o)

From Eg. 7-87, E[(x, — ¥)*] = o?(x), while from Egs. 7-82 and 7-92

E[(x-x%)] = %i)— (7-98)
Thus
E[S?) = o {Neﬁ{x}——N";f")}= o}(x).  (1-99)

Thus we have shown that the sample variance is an unbiased estimator of
o*(x). In practice it is not calculated direcily from Eq. 7-94 but rather the
square term is multiplied out so that

—

AF
§F et —3%) (7-100)
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where

—_—

5. 1 o 2
xi= Nni-lx,,. (7-101)
From this the sample standard deviation

172
N W21 & 5 .
§= (N—_—l) {W..).:;x" - (7-102)
is calculated. Morcover, when large numbers of histories are involved,
N/(N — 1) often is set equal to one.

The Central Limit Theorem

With the establishment of algorithms for making unbiased estimates of the
mean and variance, we are now in a position to utilize one of the strongest
results of probability theory; the central limit theorem.* '* Suppose that
Monte Carlo calculations are carried out, each consisting of independent
histories, such that the x,, are drawn from the same distribution having a
finite mean and variance. For any fixed value of N histories per calculation,
there is a probability density function, say fy(%), which describes the
distribution of the % that results from repeated Monte Carlo calculations.
As N approaches infinity, the central limit theorem states that there is a
specific limiting distribution for the resulting values of £, and this is the
normal distribution:

-(x - %)

. 1
J{.\l'(x} Vri";o{f} Xp[ 202{2)

]. N (1-103)

Moreover, since we already related o(%) to o¢*(x) by Eq. 7-92 we may

write
In(%) = ‘l/ % ﬁﬂp

Provided N is sufficiently large, we may now use the form of f(%) to
climinate the error in % given N, the number of particles per batch, and
a?(x) the variance of our random variable distribution. While in practice we
cannot calculate o2(x) exactly, we can estimate it from the sample variance
§2(x) given by Eq. 7-94.

We-2]  yaw o
202(x) ]‘ N = oo, (7-104)
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Suppose we want to know the probability that % is between X — ¢ and
X + e. From Eq. 7-3 we may write

P(R—e<i<X+e) =f"f”fﬂ(i)di. (7-105)

Inserting Eq. 7-104 and changing variables with /2/N1 = (X = X)/0(x),
we have

plE-e<i<i+e)= v,—z_f“ﬁ‘;ﬁ“‘/”’dre”’, (7-106)
T -0

or using the definition of the error function

P{f—egisi+e}=crf[‘/§ a(‘x}]‘ (7-107)

Thus given an £ we need only to evaluate the standard error integral to
determine the probability that & will fall into the interval X + & If we take
£ = 674a(x)/ VN we have a 50% probability that the value of x will fall
into the interval x + .67400(x)/ YN . More frequently when plus or minus
errors are tabulated for Monte Carlo calculations, they correspond to
e=a(x)/yN (ie, that % is within one standard deviation of X, the true
mean). Hence evaluating erf[1/y2 ] we find that these values correspond to
a probability of 68.3% that the sample mean % will lic within the interval
- o(x)/ VN to X+ o(x)/VN. Two or three standard deviations may
also be used if higher confidence levels are desired. For example,

6826, M=1,
P{J_r _ Mo (x) < f<®A Ml = { 954, M =2, (7-108)
IN W I e m=3

In using the foregoing error estimates some cautionary noles are war-
ranted. No matter what quantity is being estimated, the value of &' must be
large for the foregoing expressions to hold, not only because the central
limit theorem applies only for large N, but also because a large number of
histories is required for Eq. 7-102 to give a reliable estimate of o(x). One of
the most subtle problems in Monte Carlo calculations lies in determining
how many histories are required for a particular problem before these
estimates have validity. It can be very dangerous, for example, to simply run
N histories and take the error estimate calculated from the preceding
statistical tests at face value. Aside from more subtle statistical tests it is
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wise at least to tabulate the values of % and o( %) periodically from all the
preceding histories to ensure that the fluctuations are small enough to gain
some confidence that the estimates are valid.”

Second, problems may be encountered where the Monte Carlo simulation
gives rise to a probability density function f(x) for some tally for which the
variance does not exist. Then the central limit theorem is not applicable. A
difficulty is that the calculation may give no obvious sign of this problem,
since a finite—and totally fallacious—value of the sample variance may be
calculated and used to estimate error. If the variance does not exist, then
only much weaker results based on the Chebychev inequality are available
for error estimates. Moreover, if a limiting distribution can be found for
such a situation, it generally is not Gaussian.*

A third difficulty exists if the histories turn out not to be independent.
This is normally not a problem in radiation transport problems, except ior
the criticality calculations discussed in Section 7-8.

7-5 AN EXAMPLE CALCULATION

The results of the central limit theorem are remarkable. To reiterate: even
though the probability density function f(x) of the sample random variable
may be far from a Gaussian distribution, as is generally the case in
calculating flux, current, or other particle properties. the density function
fy(%) of sample mean values & is Gaussian for a sufficiently large number
of N histories per batch. Moreover, the standard deviation of f(%) goes in
proportion to 1/ YN . Thus for repeated Monte Carlo calculations we may
expect the resulting estimates % of X to be closely bunched around the true
value provided N is sufficiently large.

To illustrate this behavior, and to demonstrate in a concrete way the
behavior of some of the Monte Carlo estimators, we here analyze a very
simple problem, one for which all of the relevant properties can also be
obtained analyticaly. Consider a sphere of pure absorber that is one mean
free path in diameter. For convenience we take the cross section as o = 1
and ask what is the average flux in the sphere due to a uniform isotropic
source emitting one neutron per second. We note that the average flux is
closely related to the collision and escape probabilities for a pure absorber.
The collision probability is just

o0 5 19)
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3z2 The Monte Carlo Method

in our case since ¢ = 1 a source of one neutron per second implies that
[dV S =1, and we have P, = Vo$. Thus if we calculate the average flux in
¥, the collisiog probability and the escape probability,

Pﬂ Ll e 'Pr‘ {7“110}
follow immediately.

In the following subsection we formulate and perform a Monte Carlo
simulation of the particle transport and estimate the average flux using both
collision and path length estimators. In addition to obtaining values of the
sample mean and standard deviation, repeated Monte Carlo calculations are
performed to illustrate the Gaussian distribution of the sample mean %
about the true value. In all cases the Monte Carlo estimates are compared to
existing analytical solutions. The methods used to obtain the analytical
results are detailed in the final subsection.

Monte Carlo Calculations

Suppose we do a Monte Carlo simulation using both collision and track
length estimators of ¢. Since no scattering is present each history consists of
picking an initial position and direction uniformly and isotropically; the
distance to the first collision is then estimated by drawing a random number
by Eq. 7-22. This is compared to the distance to the surface to determine
whether the neutron collides in the sphere or escapes. For pure absorbers
the collision estimator of the flux becomes binomial, since for each history,
¢, in Eq. 7-50 is either 0 or 1. The path length estimator /, in Eq. 7-54 is
continuous, but it consists of only one contribution per history, the distance
to the collision or to the surface, whichever is shorter.

The spherical geometry enters in choosing the distribution of source
neutrons and in determining the distance to the boundary. To choose the
radius r from which a particular history originates, we note that for a
uniform source the probability that a neutron 1s born between r and r + dr
is proportional to the incremental volume between r and dr. The spatial
probability density function is thus

dv 3!
f(f‘}df= "? =Fdf‘ (?‘111}
Hence from Egs. 7-7
r\?
F(r)= (;} ; (7-112)
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and according to Eq. 7-18 we determine the initial radius for each neutron
from a second random number £ by

r=RES, (7-113)

In this problem only the radial coordinate is required to specify the
neutron’s point of origin, for provided we set the = Q(p, w) in the same
spherical coordinates given in Chapter 1, the distance to the surface is
independent of the remaining spatial coordinates. The distance is

y=|R - rzsinzx]uz— reosy. (7-114)
Or, more simply,
y= [R2 -ri(1 - Fz}]lﬂ —Tj, (7-115)

For isotropic sources, Eq. 7-115 indicates that p = cosx is evenly
distributed over —1 << p < 1. Hence for each history a third random
number £ is generated, and we take p = 2§ — 1. Note that there is no need
to sample the azimuthal angle w, since neither the distance to a collision nor
to the surface of the sphere depends on it. Since we are to record only
whether the neutron collides, and the distance to the collision, there is no
need to determine the coordinates of the collision point.

A Monte Carlo computer code has been written to estimate the value of
V. The exact values with ¢ = 1 are just Ve = ¢ and [ respectively for the
collision and path length estimators. Results are given in Table 7.1 for ¢ and
[ estimates with 10, 100, 1000, and 10,000 histories, along with the exact
results obtained analytically.

Table 7-1 Monte Carlo Estimates of a ¢ in a Purely
Absorbing Sphere with aR =1 /2

Histories Collision Estimator Path Length Estimator

N &+ o(2)/IN 1+ a(h/VN
10 0.7000 + 0.1439 0.2063 + 0.0419

100 0.3800 + 0.0455 0.2416 + 0.0215
1,000 0.2810 + 0.0143 0.2847 + 0.0066
10,000 0.2942 + 0.0046 0.2922 + 0.0022

Exact® 02927 + 0.455VN 02927 + 0.2210//N

“Analytical solutions.
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324 The Monte Cario Method

Some observations are in order. The results are not reliable for small
numbers of histories, both because the central limit theorem is not applica-
ble for small ¥ and because the estimate of the standard deviation may be
grossly in error.

For larger numbers of histories the variance of the collision estimator is
larger than that of the path length estimator. This is to be expected in this
problem, for f{c) is a binomial density function

fle)=(1—-P)b(c)+ PB(c—1), - (7-116)

while for oR = 4, f(/)is a continuous distribution over the range 0 </ < 1.
Moreover, as illustrated in Fig. 7-6a and b, where we have plotted respec-
tively f(c) and f(/), the values of f(I) are more closely bunched about the
mean than those of f(¢). The binomial representation of Eq. 7-116 is
represented in Fig. 7-6a by the vertical arrows at ¢ = 0 and 1. Figure 7-6b
is based on a 1000 history Monte Carlo sampling along with the analytical
representation given in the following subsection.

For larger numbers of histories it is instructive to verify that the
predictions of the central limit theorem hold for our Monte Carlo calcula-
tion. To this end 500 batches of 25 histories each were tabulated, and in Fig.
7-7a and b are shown histograms of the distributions of sample mean values
J25(€) and f“{f ), as well as the Gaussian distributions predicted by the
central limit theorem; in the latter, the exact values of the mean and
variance are used. The close approximations of the histograms to the
Gaussian curves is evident, indicating that for this particular problem
the central limit theorem predicts the distribution quite well even though the
number of histories per batch, N = 25, is very small.

Using these figures we have a more complete picture with which to view
the properties of the estimators. Clearly the path length estimator results in
smaller errors than the collision estimator for a given number of histories.
This stems from the smaller spread of [/ about { than of ¢ about Z, as
illustrated in Fig. 7-7. Moreover, by looking at the definition of the mean it
is clear that the best estimator of all would have the form f(x) = (% — x),
for then there would be zero vaniance. Of course such an estimator is not
available. In general, however, we would like to have estimators that result
in nearly all histories making comparable contributions, for this leads to
f(x) that is concentrated about ¥ with 2 resulting small variance.

Analytical Solution

The foregoing pure absorber problem is for illustration only, since it is
sufficiently simple that all of the results may be obtained exactly by
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Figure 7-8 Characteristics of flux estimators for sampie problem: (&) collision (binomial)

estimator, (b) track length estimator.
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analytical methods. In Eq. 7-44 we have already obtained the conditional
probability density function that a neutron will travel a distance between [
and ! + 4/ in a solid, given a distance y to the surface:

fUiy)=oe™H(y = 1) + e~ ™8(I - y). (7-117)

From Eq. 7-42 it is clear that the probability that such a particle will collide
in the volume is

P(y)=1-e". (7-118)

If we know the density distribution A(y) of path lengths y to the surface
produced by a given source distribution for a solid of given size and shape,
then the collision probability is

P= f:d,v{l ~ e )h(y), (7119)

from which the probability density function for the collision estimator given
in Eq. 7-116 can immediately be determined. Since f{(c) is a binomial
estimator, from Eq. 7-76 we have

a’(c) = P(1 - P.). (7-120)

The probability density distribution for the path length estimator can be
obtained by integrating f(/|y) over the distribution of path lengths:

1= Z v f(liy)h(y). (7-121)

And then
o(1) = f:duzf(z) —[j;mdz.y(z}r. (7-122)

For solids of very elementary shapes, the distributions A( y) of distances
to the surface have been obtained elsewhere for sources that are uniform
and isotropic.!” In particular, for a sphere of radius R,

” P
h(y)= 4R(1 Et_‘)' p==lh

0, y > 2R.

(7-123)
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Combining this expression with Eq. 7-119 thus yields for the collision
probability

P.=1- 2 [2(1:;}?)2 -1+(1+ an]e'z"“]‘ (7-124)

‘ 8(oR)’

Again using A( y) in Eq. 7-121, we obtain the path length distribution to be

2 A
gt cothre Sl +—’~]. (7-125)

= —al
A=t 40R 4R 16 gR? 16R*

which is plotted for oR = § in Fig. 7-6b. The variance for the path length
estimator is obtained by combining this equation with Eq. 7-122.

7-6 NONANALOG MONTE CARLO
Properties of Varlance

The foregoing simple problem leads to two extreme forms of estimators:
binomial sampling in which particle contributions to the result are either
zero or one, and estimators in which all particle histories make a nonzero
contribution to the result. In more realistic problems, simple binomial
sampling is rarely used. Neither is it usually possible to find an estimator in
which all histories make a nonzero contribution. Estimators are likely,
rather, 1o have both a delta function and a continuous contribution of the

form’
f(x) = ed(x = 0) + g(x), (7-126)
where one must have from Egs. 7-4 and 7-65,

[7 axg(x)=1-¢ (1-127)

and
o0
E-——f dx xg(x). (7-128)
— %0
The relationship of these quantities is sketched in Fig. 7-8. The delta

function term comes from particles that contribute nothing to the result
while the seccond term g(x) indicates the spread in path lengths or other
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Figure 7-8 Tally distribution for a problem in which a fraction (1-c) of the y histories
contribute to the result.

characteristics of the particles that do contribute. Such situations occur, for
example, in shielding calculations where a large fraction ¢ of the particles
never penetrate to the outside of the shield where the flux is to be calculated.
Correspondingly, those particles that do reach the area of interest make
varying nonzero contributions, depending on their position, direction and
energy.

The contribution to the statistical uncertainty of the result ¥ for Fig. 7-8
can be split into two parts since the variance of f(x) can be writlen as the
sum of the contributions of the two terms:

o’(x) = of + 0. (7-129)

The first term .4 is due to the inefficiency of the Monte Carlo procedure,
That is to say that not all of the particles contribute to the result. The
second contribution o, is the variance that is intrinsic to the spread of
nonzero values of contributing histories about X.

For many realistic problems the value of ¢ is unacceptably large when
the analog Monte Carlo methods are used, even when the best available
estimators for a particular quantity are used. To take an extreme example,
suppose that a shield provides an attenuation of about 10°. Then only one
analog particle per million will contribute to g(x) above! Because of the
pervasiveness of this problem it is necessary to depart from analog Monte
Carlo in order to reduce the variance of the result, particularly by increasing
the fraction of histories that contribute to the result.

In doing this, however, a tradeoff is encountered. As various nonanalog
devices are applied to reduce the variance, the computing time per history is
likely to increase. Therefore, some figure of merit is needed to determine
whether a net gain in accuracy for a given computing time has been
achieved. The following criterion is frequently used. Suppose we take the
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variance of the result o?(%) as a measure of the inaccuracy, and the total
computer time T as a measure of the computational effort. Then a reason-
able figure of merit is the inverse of o?(%)7. Then letting T = Nr where £ is
the mean time per history, and recalling that 0(%) = ¢*(x)/N we have for
the figure of merit

= 7-130)
a""(x}t (

In what follows some of the techniques that are discussed actually cause
an increase in o2. However, if in such cases they also cause a large reduction
in the time per history, they will increase the figure of merit, and therefore
their use is advantageous.

importance Sampling

The problem of reducing the statistical uncertainty of Monte Carlo results
may be approached in a somewhat more formal manner through the
concept of importance sampling."*'* The object of a Monte Carlo calcula-
tion is to calculate a mean value

Fom fxf(x)dx. (7-131)

where x is some random property (variable) of the neutron history. The
variance

ol{(x) = f{x — %) f(x) dx (7-132)

is a measure of the uncertainty.

Suppose we now modify our Monte Carlo procedure such that we sample
not f(x) but some modified probability density function, say f(x). Then if
we define a weight function

w(x) = ﬁﬂ (7-133)
Eq. 7-131 may be written as
%= jxw{x)f(x)ax. (7-134)

Thus if we are to obtain an unbiased modification, the value of X must be
preserved. This is done by sampling from f(x) and weighting the result by
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w(x). For our N histories we started cut by tallying
e lz
2= - X, (7-135)
from the sample of f(x). Now we taily
) = 3 Ewl
N x,)x, (7-136)

by Famp!ing f(x) for the x,. If the sampling of f(x) and of fix) is
unbiased, both % and xw have an expectation value of X; hence they
converge to X as the number of histories goes to infinity.

The objective of the foregoing exercise is to obtain an estimator with a
smaller variance and therefore a smaller statistical uncertainty. The variance
of xw{x) is

o[ xw(x)] = f{xw(x] - %) f(x) dx (7-137)

or, using Eq. 7-134 and the fact that f(x) is a probability density function,
and hence [f(x)dx = 1, we have

o [xw(x)] = fx’w(x}zf(x}dx —[fxw(x]}:(x)dx]z‘ (7-138)

The associated sample variance is then

s? =%{(wx)1—m], (7-139)
where
(wx)'= % Tw(x, Fxl. (7-140)

Hence if we can reduce the sample variance without altering X, we are
successful. In a particular instance if we choose f{x) such that

w{x)x = %, (7-141)

we have obtained a zero variance result, and therefore one with no statistical
uncertainty. The fulfillment of Eq. 7-141, however, requires that we solve
t[?e adjoint transport equation to determine w(x) to meet this condition. As
discussed in Chapter 1, the solution of this equation is just as difficult as the
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solution of the transport equation itself. Therefore, in a practical sense there
are no zero variance sampling methods. However, the very knowledge of the
existence of such a function leads one to attempt approximations to it that
reduce variance without leading to undue increases in computation time per
history. Methods have been developed in which approximate solutions of
the adjoint equations are used to reduce the variance of a Monte Carlo
calculation.!” Such approximate methods often are based on discrete
ordinates or other deterministic methods in simplified geometries. While the
use of deterministic methods to reduce variance through importance sam-
pling or related controlied variants -3 techniques can be quite powerful in
some circumstances, a detailed discussion would carry us too far aficld. We
concentrate our attention instead on those variance reduction technigques
that are more universally applied to the extent that they are incorporated
into nearly all Monte Carlo codes.

Varlance Reduction Methods

Other than devising improved estimators, most variance reduction devices
require that we modify the simulation of the particle histories in a nonana-
log manner. The goal, again stated in terms of Figure 7-8, is to increase the
fraction of particles that contribute to the result, thus decreasing the delta
function at zero and moving the contributing distribution closer to the mean
value X. This task is carried out as follows.

Nonanalog procedures are most frequently applicd at each collision,
boundary crossing, or other event during a particie history. Thus the particle
weight must be appropriately adjusted each time that such an event takes
place to compensate for the modified sampling. Suppose for the nth particle
that x,,X,g,..., X, are collisions, track lengths, or other tallies that
contribute to the sample mean. If we designate w,;, W,z, ..., W,;, as the ath
particle weights at the times that these tallies are made, then the contribu-
tion of the nth particle to the sample mean and variance, Eqs. 7-136 and
7-139 respectively, is determined from

w(x,) Xy = LWaiXuis (7-142)
:
where for i > 0,
Xi= Y% (7-143)
and f
w(x,) = %"Z‘wmxw (7-144)
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The foregoing procedure is made clear below by the detailed discussion
of several of the standard variance reduction techniques. Some of these are
often referred to as biasing techniques. It must be kept clearly in mind,
however, that only the probability density function is biased; the tally
procedure must also be modified to maintain an unbiased estimator of the
mean.

Absorption Suppression. A nearly universal option of Monte Carlo codes
is that a particle history is not terminated by absorption. This often is called
survival biasing or implicit capture. In it, once the location and energy of a
scattering event are specified, the criterion £ > g,/0 is no longer used to
determine whether the particle will survive the collision. Rather, the weight
of the particle at the ith collision is reduced by setting

[y
Waier = (1~ 2) (7-145)

to correspond to the survival probability. This procedure lengthens the
computing time per history, since the number of coilisions is increased. This
is more than offset, however, by the reduction in variance, provided one of
the following criteria for history termination is used.

History Termination and Russian Roulette. If absorption is suppressed,
then the only way for a history to terminate is by leaking from the system. If
the characteristic dimensions of the system are large in terms of mean free
paths, this will lead to very inefficient sampling. For after a sufficient
number of collisions the particle weight will be so small that it no longer
will be capable of contributing significantly to the tallies. Therefore, a
supplementary nonanalog method is normally included to terminate the
history if the weight becomes too small. Setting some lower limit on
the weight and terminating the history when the weight becomes less than
the limit is one possibility. However, this will cause the tallies to be
underestimated, and the resulting bias may be significant. More physically
Justifiable criteria may be used to terminate histories. For example, in
shielding problems it is often only the neutrons or gamma rays above some
energy threshold that can contribute significantly to the result. In this case,
histories may be terminated when the particles scatter to energies below
such a threshold.

Since it introduces no bias, Russian roulette is normaily considered a
more reliable method for terminating histories. In this procedure one first
checks to see if the particle weight has fallen below some minimum value. A
uniformly distributed number 0 < £ < 1 is generated and compared to an
input number Z, where Z might be typically between 2 and 10. If § > 1/,
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the history is terminated. If £ < 1/Z, the history is continued with a weight
multiplied by a factor of Z. In general, Russian roulette increases the
variance of the result. Since the further tracking of unimportant particles is
eliminated, however, the average computation time per history is reduced.
Moreover, if reasonable values of the cutoff weight and of =’ are chosen, the
net effect should be an increase in the figure of merit 1/(1a?), given by Eq.
7-130.

Splitting and Russian Roulette. When particles become unimportant, for
example, due to their small weight, we may play Russian roulette in order to
decrease the number of particles that must be tracked further while increas-
ing the weight of those remaining to retain unbiased estimators. Similarly, if
particles become very important, it is often found advantageous to increase
their number by splitting them into two or more particles, each with an
appropriately reduced weight to maintain unbiased estimators. If we have a
=-to-one splitting of a particle, each of the new particles will have only 1 /2
of the original particle weight. Splitting reduces the variance of the resulis
but causes computation time per each initiated history to increase. The
important point is that when effectively used, splitting, like Russian roulette,
causes a net increase in the figure of merit, 1/(r0?).

The effect on computation time per history of these converse procedures
is obvious. The effect on variance is more subtle, but it may be understood
in terms of the probability density function in Fig. 7-8. When Russian
roulette is applied to small weight particles, contributions are added to Fig.
7-8 at x = 0, from terminated histories, and at large values of x, well above
the mean. Thus Russian roulette causes a spread in the density distribution
f(x) further from X and thereby increases the variance. Conversely, splitting
has the effect of creating a larger contribution to f(x) at smaller values of x,
which are closer to the mean. Thus the variance is reduced.

Splitting most commonly is made to take place at boundary crossings.
This is illustrated in the deep penetration problem shown schematically in
Fig. 7-9. In this problem the object is to determine the fraction of the
particles entering on the left that penetrate to the right-hand side of the
shield. If the shield is many attenuation lengths thick, then on the average
only a small fraction of the particles will penetrate.

In Fig. 7-9, the problem domain is divided into a number of subdomains
as indicated by the dashed lines. For this problem the particles will have
increased importance as one moves from left 1o right. For simplicity assume
that all of the values I, /I, are integers greater than one. Then, when a
particle crosses a boundary to the right it is replaced by [, /I, particles,
each with a weight of /,/1;,, of the original particle’s weight. Each of the
new particles is then tracked, generating independent sets of random
numbers for collisions, path lengths, and so on.
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Flgure 7-8 A deep penetration problem divided into four regions for splitling,

Conversely, if a particle moves to the left from a region with importance
I, ., to I, Russian roulette is played with = = I, /[, to terminate selec-
tively some of the relatively unimportant particle histories. In using geomet-
rical splitting and Russian roulette in conjunction with Egs. 7-136 and 7-139
for estimating mean and variance values, all of the progeny of a source
particle must be included under x,. Otherwise the correlated behavior of the
progeny might cause the variznce to be seriously underestimated.

The foregoing splitting procedure may be generalized to three-dimen-
sional regions and to noninteger values of the importance ratio. In general,
it is a very effective method of variance reduction for deep penetration
problems, particularly if one has either some intuition or an approximate
adjoint result from which to make good selections of the importance
regions.

Geometry splitting with Russian roulette is a reliable variance reduction
technique because it causes the particle weight to have more nearly the same
values within a given volume. Splitting or Russian roulette could be used
separately; however, the variance then will be larger than when both are
used together, since the weights will have a wider spread of values within a
cell.

Experience has indicated that the best splittipg results are obtained for
deep penetration problems when the number of particles passing through
the system is kept approximately constant.” Thus in the foregoing illustra-
tion one might do a two-for-one splitting wherever the particle population
has dropped by 2 factor of 2. Large splitting ratios (e.g., 20 to 1) can be used
to build up the population of penetrating particles after it has been
substantially attenuated. However, this will not regain information from the
lost particles, and in general it will place a heavy burden on reliable
sampling due to the correlation of progeny of the same starting particle.

The Expomential Transformation. As an alternative to splitting, the ex-
ponential transformation prevents the rapid deterioration of particle popu-
lation in deep penetration problems by stretching the distance between
collisions in the forward direction in an unbiased manner. Particles are
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allowed to move in a preferred direction by artificially reducing the macro-
scopic cross section in that direction.?

Suppose the particles are to move preferentially in the x direction. Then
we take as a transformed cross section

0, =0(1-pQ-i), - (7-146)

where the degree of biasin'g is determined by the parameter 0 < p < 1. Ata
collision the particle weight is multiplied by a factor w,, to preserve the
expected weight. This weight is determined by first noting that the probabil-
ity of colliding between travel distances u and u + du is oexp(—ou)du
regardless of whether o = o, or o = g,,. Hence to preserve the expected
weight of the collided particle one must have

o "du=w,0,e "“"du (7-147)
Combining Egs. 7-146 and 7-147 we then have

» exp(—po - i) (1-148)
€X 1 _p 'I ~

A different correction must be made if the particle reaches a bnu_ndary
before collision. Then the weight must be modified so that it is multiplicd by
the probability that the particle reaching the surface remains constant:

e N =w, e” ", (7-149)

Thus
w,, = exp(—pa, - ). (7-150)

Some precautions are zlso in order in applying the exponential transform.
As an example, for one-dimensional penetration problems in highly absorb-
ing media the variance will decrease as p is increased above zero until some
optimal value, say , is reached. Thereafter the variance will increase as p
increases toward one. Choosing a reasonable value of p is a matter of
experience. It should be pointed out, moreover, that choosing parameters
for the transform can be very tricky in multidimensional problems, and that
if any mechanism for particle termination is used, it must be compatible
with the exponential transform.

Forced Collisions. In contrast to the exponential transform, whet_e the
distances between collisions is modified, a method is needed whose object is
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to shorten the distance between collisions.® Such an artifice is most useful in
situations where a reaction rate or other quantity is to be calculated over a
small volume. For such situations it is often necessary to modify analog
Monte Carlo to increase the number of collisions in the volume. Qtherwise,
the small number of cellisions would lead to inadequate statistics.

In the method of forced collisions we split a particle into two smaller
weight particles, the first of which passes through the volume without
colliding, and the second of which is forced to collide. Suppose that a
particle with weight w enters a volume such that it must travel a distance w
before exiting from the volume. The probability that it will pass through the
volume without collision is then exp(—ou), where o is the total cross
section. We thus divide our particle into two particles. The particle that
survives without collision has a weight
W, = we "4 (7-151)

€
and the particle that collides has a weight
w, = w(l — e ™). (7-152)

The surviving particle history then is continued with its modified weight, by
sampling to find how far from its position on the surface of the volume it
will travel before making its next collision. The position of the collision of
the particle with weight w, within the cell also must be found within the cell.
The probability density function for collision of this particle within the cell
18

D=sx=<u (7-153)

Hence using Egs. 7-7 and 7-17 we generate x, the distance traveled before a
collison from the random number £ to be

x = —%ln{{l - #1-e")). (7-154)

Once the point of collision is determined, the history is followed with
reduced weight w, by next applying collision mechanics sampling to de-
termine direction, energy, and weight of the scattered particle,

Forced collisions in small volumes are likely to lead to small weight
particles being generated. Russian roulette or other weight cutoff mecha-
nisms, however, are normally not used in that volume. For only then can
one ensure that the collided sample that was obtained through forced
collision will not be terminated.
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Source Biasing. In source biasing we distort the distribution of source
particles in order to produce more of them in regions of the space-angle-
energy phase space that are known to be most important for the result.
Suppase we replace a source distribution S(7, E,§) by a biased distribution
S(F, E,Q). If each particle from the unbiased distribution were to have a
weight of 1, then in order to preserve the unbiased estimators we would
need an initial weight of

u SR ES (7-155)

for a particle born at 7,8, E.

An example of source biasing may be helpful. In shielding from fission
sources it is well known that neutrons of about 8 MeV contribute most to
the radiation doses, even though the average fission neutron energy is only
about 2 MeV. Hence one might want to have a value of §'/§ that is greater
than 1 for neutrons with energies greater than say 5 MeV, and decreasing
rapidly as the neutron energies fall below this value.

Correlated Sampling. In problems where one is attempting to measure a
small perturbation of a system, the perturbation usually will be masked by
the statistical errors if an attempt is made to calculate the change as the
difference between two independent (i.e., uncorrelated) Monte Carlo results,
This situation can be alleviated by correlated sampling.”? Twoe Monte Carlo
runs are made in which the corresponding histories are initiated and
followed using the same set of pseudo random numbers. The sequence of
events for the perturbed and unperturbed runs are hence identical until the
perturbation causes the histories to differ. Hence for no perturbation,
identical results are obtained for the two runs. In the presence of the
perturbations, the results differ only by the amount that the perturbation
causes the histories to diverge.

Optical Reciprocity. The optical reciprocity relations discussed specifically
in conjunction with the calculation of collision probabilities in Chapter 5
can be applied more generally as a variance reduction technique in Monte
Carlo calculation. For often the reciprocal problem solution will have an
inherently smaller variance than the original problem. This is particularly
true when one is trying to calculate a flux, detector response, or other
reaction rate over a small volume. We illustrate with the following simple
monoenergetic example.
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Suppose we have an isotropic source distribution S(F) in a solid with
vacuum boundary conditions. We want to calculate the flux integral

fV dve(r) (7-156)

over a small detector volume ¥, in the much larger volume V. This is a
difficuit Monte Carlo problem, for very few neutrons will collide or even
pass through the small volume V,, making both collision and path length
estimators very inefficient. Suppose we call this Problem 1 and consider a
reciprocal Problem 2 also in the same solid with vacuum boundary condi-
tions. The reciprocity relationship, Eq. 5-155, then reduces to

Jav [d24:(7, ~0)ai(7) = [av [a24:(7.8)a:(7), (7-157)
since at the boundary we have
$i(F.0)=0 and ¢,(FR)=0, Fel,Q-a<0 (7-158)

and hence the surface terms vanish. Now suppose for our reciprocal
problem we take

1, reky
g, (F.0) = { L 7-159
2 a, FEV,. ( )
Carrying out the integrals we obtain from Eq. 7-157
[ ave()a(7) = [ ave,(7). (7-160)
v Iy

From this relationship we see that if we solve for a weighted integral of
&, (7) over the entire volume, we can set this equal to our integrated detector
flux. This is a much lower variance calculation to carry out. We simply track
neutrons that originate from the localized source in V¥, and nearly all of
them will contribute to the weighted flux integral on the left of Eq. 7-160,
since it includes the entire problem domain.

The foregoing procedure may be taken one step further to estimate the
flux at a point. Suppose instead of Eq. 7-159 we take ¢,(7, &) = §(7 — FA
then ¢,(F) in the above equation becomes ¢ (7)), the flux at 7. Such
applications of optical reciprocity are very useful, except where the source
q,(F) is also localized over a small volume, for then the estimation of the
left-hand side of Eq. 7-160 may be no less difficult than that of the right.

7-7 Tracking In Phase Space 339

For general-purpose Monte Carlo calculations tracking must be done in a

"phase space that includes energy as well as space and angle. Optical

reciprocity in the form we have discussed thus far is no longer applicable.
One must rather form the reciprocal problem with the adjoint transport
equation, and Eq. 7-160 must be replaced by a more general energy-depen-
dent expression in which ¢,(F) corresponds to the adjoint flux. Powerful
applications of such adjoint Monte Carlo methods may be found in the
literature, ™ 1% 2

7-7 TRACKING IN PHASE SPACE

In the foregoing discussions of both analog and nonanalog Monte Carlo
methods very little was said either about the detailed mechanics of collisions
or about the tracking of particle paths through complicated spatial con-
figurations. This has been deliberate in order not to obscure the fundamen-
tal concepts with an excess of detail. It is the ability to handle the details of
energy-dependent cross sections and collision mechanics, and to track
particles through bodies of complex shapes and orientations, however, that
provides Monte Carlo its primary advantage relative to deterministic meth-
ods. In this section we sketch some of the techniques used in collision
mechanics. Qur treatment is limited, for taken too far afield, it entangles us
in the details of how nuclear cross section sets are generated and handled.
We then discuss the tracking mechanisms used to follow particles through
space and across material interfaces in complex geometrical configurations.
Ultimately such discussions become involved in the details of the geometry
tracking packages that are incorporated into particular Monte Carlo codes.

Cross Sectlons and Colilisions

In considering the treatment of the energy variable, one must first dis-
tinguish between continuous energy and multigroup Monte Carlo. In con-
tinuous Monte Carlo, cross section data are stored either in the form of
tables or analytical models so that when a particle makes a collision at
energy E the cross sections can either be evaluated directly or interpolated
to whatever level of accuracy is desirable. The same holds true for scattering
functions. Thus in principle no physical approximations are necessary in the
treatment of the nuclear data, and the accuracy of the resulting Monte
Carlo calculation is limited only by errors in the data and the statistical
uncertainty due to the finite number of histories. Such calculations are
particularly useful for benchmarking more approximate methods.
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In contrast, multigroup Monte Carlo® simulates not the exact transport
equation but the discrete energy approximation derived in Chapter 2. Thus
the systematic errors incurred in the generation of the multigroup cross
sections are present also in the subsequent Monte Carlo results. Multigroup
Monte Carlo is nevertheless a very useful tool, for it can be used to check
the angular approximations and geometrical modeling of deterministic
methods. More important, it can be combined with discrete ordinates or
other deterministic methods using the same cross section sets.

There are significant differences in the way neutron and photon cross
section data are treated in continuous Monte Carlo codes. These stem
primarily from the fact that photon information is a rather smooth function
of energy, and morcover varies continuously with the atomic charge of the
nucleus. In contrast, the resonance structure of neutron cross sections causes
rapid variation in energy, while at the same time making it impossible to
infer the cross section of one nuclide from those of adjoining nuclides on the
periodic table. The result is that while photon cross sections can be
generated from relatively coarse mesh energy and atomic number interpola-
tion, much mere detailed tables of data are needed for each nuclide with
which a neutron may collide.

Neutron Scaitering. As an example of how a collision simulation might
work in a continuous energy Monte Carlo code assume that a neutron is
traveling through a medium with energy £ in direction £. To obtain a
collision site from Eq. 7-22 the mean free path and therefore the total
macroscopic cress section o £) for the material composition of the medium
must be obtained from the data tables. Once the site of the collision has
been obtained, the neutron weight may be multiplied by [o(E) —
6,(E)]/a( £) and the absorptions tallied. Another random number is gener-
ated, and the nuclide with which the neutron is to scatter is determined by
comparing that number with the ratios of ¢/(E)/o,(E), where o is the
scattering cross section of the ith nuclide. If more than one type of
scattering is present (e.g., elastic and inelastic), the ratios o,/0/ and o,./a}
are compared to the random number to determine which type of scattering
takes place.

Once the nuclide and type of scattering have been specified, we are
prepared to determine the particle energy and direction, £° and &, follow-
ing the scattering event. We first consider the case of elastic scattering,
where u_,., the cosine of the scattering angle in the center of mass system, is
first sampled. If the scattering is isotropic in the center of mass system, then
B, 1 determined by sampling a uniform probability density function over
the interval —1 < pu_, < 1. If the center-of-mass scattering is anisotropic,
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then a table look-up or analytical model of the scattering law must be used

in sampling g _,,.
Once p,,, has been specified, conservation of energy and momentum
arguments determine the energy after collision to be*

E(A*+ 24 1
g B4+ 24, + 1)

5 (7-161)
(4+1)

where A is the atomic mass. With E’ determined, the cosine of the

scattering angle in the laboratory system may be shown to be

cosf =00 =2(4+1) §,—+§(A—1}\/%. (7-162)

Finally, knowing cos#, we must specify a polar angle w before the direction
) can be determined. Since the scattering law is independent of «w, we
simply sample w = 2w£, where ¢ is a uniformly distributed random num-
ber. Then it may be shown that the direction cosines of ' are given in
terms of those of & by*

e L [2,sinw - 2,2 cos 0] + Qcosd,

=

Q= —ﬂj[-‘ﬂ‘sinw - Q,8cosw| + Qcosd,  (7-163)

to-al
Q, = sinfy1 — R2cosw + Qcosh.

The procedure for inelastic scattering by the nucleus is somewhat more
complicated. One must first sample a nuclear model to determine the
excitation energy E* of the residual nucleus; both effective temperature
models and discrete energy level look-ups may be used for this purpose. In
the limit where the atomic weight is large, 4 >= 1, the scattering will be
isotropic in the laboratory system, allowing Eqgs. 7-38 to be used in conjunc-
tion with Egs. 7-163 to determine the new particle direction . For this
situation we then have

E'=E - E*. (7-164)

In the cases where nuclear inclastic scattering is significant in lighter
nuclei generalizations of Egs. 7-161 and 7-162 are developed in detail
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elsewhere®™ S for the determination of & and E’ once E* has been
determined. Likewise if scattering of thermal energy neutrons is to be
considered one of the several models taking into account, both the thermal
motion of the target nuclide and possibly the chemical binding of the
nuclide must be utilized. Such formulations are discussed elsewhere.’

Photon Interactions. If low-energy photon transport is simulated by Monte
Carlo methods, a number of phenomena that are not important at higher
energies must be included: photoelectric fluorescence, coherent Thompson
scattering, and form factors from binding in Compton scattering.’ Here we
limit consideration to higher energy photon transport such as that encoun-
tered in gammna ray shielding problems. In this case the cross section may
be considered to consist of only three contributions: photoelectric effect,
Compton scattering, and pair production:

o(E) =9, (E) +0,(E) +q,,(E). (7-165)

The photoelectric effect is treated as an absorption reaction, while the
Compton scattering and pair production are treated as scattering reactions.
Typically absorption is suppressed by reducing the photon weight by
(} = a,.}/0 and then a random number is generated and compared to the
ratio o, /(0. + 9,,) to determine whether Compton scattering or pair
production has taken place. In contrast to neutron interactions no distinc-
tion need be made as to which nuclide is the target.

Pair production is a threshold cross section with nonzero values only
above 1.022 MeV. It is typically modeled as follows. The photon vanishes,
and the resulting positron is assumed to be annihilated by an electron at the
collision point producing two gamma rays, isotropically distributed in the
laboratory system, each with an energy of 0.511 MeV. Typically this is
treated by producing only one 0.511 MeV photon, and multiplying the
weight by 2.7 Hence the number of photons that must be tracked is not
doubled with each pair production collision.

For gamma rays, binding effects can be neglected and Compton scatter-
ing considered for free electrons. In this situation the Klein-Nishina for-
mula and the Compton law can be combined to yield the density function
for the conditional probability that a photon with energy E will scatter
through an angle whose cosine is p in the laboratory system?

1
1+E(Q1-p)|

mrd
o (E)

f(HE) = D+ EQ-p)] HEQ-p)+p%+

-l<p<1. (7-166)
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Here o,(E) is the Compton scattering cross section per electron, ry is the
classical electron radius, and £ is given in units of the electron rest mass
energy, 0.511 MeV. Once Eq. 7-166 is used to determine g = cosd, the
scattering angle, the polar angle w through which the photon scatters can be
chosen from a uniform distribution; and then Eqs. 7-163 may be applied to
determine the new direction £’ of photon energy. The photon energy
following the collision is then given by the Compton scattering law

E
. S—
1+ E(1—p)

where the energies are again given in units of the electron rest mass.

Multigroup Interactions. The foregoing collision mechanics procedures for
both neutrons and photons are modified significantly when multigroup
Monte Carlo is used. Absorption is again suppressed by particle weight
reduction. One must then determine the group and the direction of the
particle after the scattering collision. Suppose a particle scatters in group g
of G energy groups. To determine the group g’ into which it scatters a
random number £ is generated. If

£ l"ss _t_zl"gx

£ <t<io , (7-167)
Lz g z %%g

Er=1 =1

the particle is emitted in group g’. If scattering is isotropic, then p and ©
are uniformly distributed. If not, the angular distribution of scatiered
particles usually is represented in terms of the laboratory scattering cosine
i, by a low-order Legendre series. This may be sampled to determine p. The
azimuthal angle @ is then uniformly sampled and the final direction
determined.

Tallles
The tallying procedures, as well as the collision mechanics, must be gener-
alized to take into account the energy of the particle and the nonanalog

tracking procedures. If we are to determine the average flux in some volume
¥, which we assume is uniform, then

¢ =[dE [ave(7, E). (1-168)
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Comparing this expression with the path length estimator given by Eq. 7-52
we see that the estimator retains the same form insofar as the energy
dependence is concerned. The only exception is in the situation where the
integral in Eq. 7-168 does not include all energy. In that case only path
lengths of particles within the specified energy interval are included. Like-
wise, the current and surface crossing estimators of Eq. 7-59 and 7-60
require no other modifications. The tallying of the collision estimator, Egs.
7-51, must be modified due to the energy dependence of the cross section in
the denominator. In nonanalog tracking each particle is assigned a weight
that changes value with each collision due to absorption suppression, and
may also be altered due to Russian roulette, splitting, or other variance
reduction techniques. Each of the tallies in Section 7-3 must be ap-
propriately modified to take the weights into account. If w,; is the weight of
the nth particle after the ith collision, then the contribution to the nth
history is given by Eg. 7-142. With the path length estimator, for example,

wn!n 2 wnn!nﬂ £z wnifn] anns {T‘lﬁg}

where [, is the path length through the volume ¥ after the ith collision of
the nth history. The sample mean and variance are then obtained from Egs.
7-136 and 7-139. Hence for the path length estimator,

¢—w2 (7-170)
§2 = %(E—Eg), (7-1711)
“'~_NE,,(W"!")1' (7-172)

The treatment of the surface crossing estimators is completely analogous.
The tallying for the collision estimator must be modified for the energy

dependence of the cross sections as well as for the nonanalog tracking. To

generalize Eq. 7-51 each collision must be weighted by w, /6(E,,), where

E, is the energy of the nth history particle before the ith collision.
Equation 7-51 is then generalized to

=1 l W,

ey (1)

where again on]y collision within ¥ for which E,, lies within the energy
interval included in Eq. 7-168 are tallied.
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The tallies discussed thus far require that the flux be averaged over some
volume ¥, or surface A. A difficulty presents itself if one is required to
obtain the flux averaged over a very small volume, or worse, at a point. For
a finite number of histories the variance of the result will rise rapidly as the
volume decreases, since few if any of the particles will collide or even pass
through the volume. Ultimately, the results will become totally unreliable as
one approaches the point limit, since for a given number of histories N the
most likely result will be that no particles contribute to the tally.

To circumvent this impass either the adjoint procedure alluded to in
Section 7-6 must be applied, or alternately one of the flux-at-a-point tallies
may be used.>~%'%'® The simplest of these tallies is the analog next-event
estimator. In this approach each time a particle is born or undergoes a
scattering collision the probability that a particle will be emitied in the
direction £’ pointed toward the detector point is calculated. If this probabil-
ity is multiplied by the probability that the particle will survive to the
detector without making another collision, then an estimate of the point flux
contribution can be made. Note that the tracking is.not altered to actually
direct a particle toward the detector; rather only the probability of the next
event occurring at the detector is estimated before proceeding with the
unperturbed tracking of the particle. This tally technique can be expensive
since it involves the following calculation at each source particle or scatter-
ing site.

Consider the flux at a point contribution from a scattered particle. Let
f(ﬂ §|E)dS’ be the probability in the laboratory system that a particle
will be emitted in the solid angle d2' about the direction ' pointed from
the collision site toward the detector point. If 7 is the point of collision and
7’ the detector point, then

(8- QE) dQ exp(—1(F.F, E"}) (7-174)

is the probability that the particle will scatter into 42’ and arnve al the
detector point without further collision. Here 7(7, 7", E") is the optical path
length between 7 and F* for particles of energy E’, the latter energy being
determined from the scattering law.

To obtain the flux estimator we first write

s (1-175)

da|f — 7P’
where dA is an incremental area normal to the scattering line ', and
passing through the detector. Hence

exp{ - 5 ED) (7-176)

; 7(7,
f(8-XE) da Ao I"‘
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is the probability of scattering toward the detector and passing through an
incremental area d4 normal to the line of flight at the detector. Since the
scalar flux contribution may be defined as the number of particles passing
through a unit area normal to the line of flight, the contribution from the
scattering event at 7 is

1 —*’ —'\f‘ E;
4, = f(0- o) RLZHETEN (7-177)
duff — 72 |,
where the subscripts have been added to denote the ith collision of the nth
history. Then the scalar flux at 7 is estimated from

o(7) = 5 Z Lo (7:178)

where w,, is the particle weight.

In addition to the elaborate calculation that must be carried out at each
tally point, there is 2 more fundamental problem with this estimator. Due to
the |F — 7] in the denominator, the variance does not exist if the point is in
a scattering medium. Thus while the estimator can be used with the
conventional variance estimates in vacuum or absorber regions, in a scatter-
ing region a collision at " would cause an infinite flux contribution. As a
result one of the more subtle flux-at-a-point estimators is required to correct
this effect. Such estimators, however, tend to increase further the computa-
tion effort required for each contribution to the tally.

Geometrical Tracking

Heretofore we implicitly assumed that the problem domain consists of only
one region, or at least that we knew how to select the region of the next
collision. In fact the geometrical tracking of particles across material inter-
faces is often one of the most complex and time-consuming parts of a
Monte Carlo calculation. It consists of the closely related tasks of mathe-
matically specifying—and checking—the geometrical configuration of the
preblem, and of tracking particles across the resulting interfaces. In the
following discussion we bricfly outline the techniques that are used in
specifying geometry and then describe a typical procedure of particle
tracking.”*®

Geometry Specification. Typically a Monte Carlo calculation will consider
a problem spatial domain to be divided into a number of elementary regions
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— sometimes called cells. Each such region has a specified composition of
nuclides and is bounded by surfaces thal are most often determined by first-
or second-degree algebraic equations in a Carlesian coordinate system.
Fourth-degree surfaces, such as in the case of toroids, are also frequently
used.

Each interface or boundary in the problem thus can be represented by an
equation, say

fx(x,p,2) = 0. (7-179)

The equation thus divides the three-dimensional domain of the problem i‘mo
two domains. We designate as the domain X that part of space for which

fx(x,y,2) <0, (7-180)

while the domain X, or not X, is that part of space for which
felx,y.2) > 0. (7-181)
With the foregoing formalism we can specify finite regions of space as the
intersection of these subdomains. Suppose, for example, we want to have a

finite cylinder of length  and radius R, centered at the origin and parallel
to the z axis. Then let

ey =2=9,  folxr)=z+3,
and  fo(x,y,2)=x+y'— R%. (1-182)
The cylinder designated as region D would then be
P=AnBncC. (7-183)

In designating these elementary regions care must be taken that the volume
of the cell always lies on the same side of a boundary surface. An
elementary region as shown in Fig. 7-10a, for example, would not be
allowed because part of the cell lies on either side of the boundary surface
x —y=0. Such a cell would be divided into three elementary cells as
indicated in Fig. 7-10b. The reasons for the foregoing restriction as well as
the following piece of information will become clear as the tracking proce-
dure is discussed.

After specifying the surfaces whose intersections form the elementary
region, the regions that lie on the opposite side of each interface must also

- T
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/

{a} (b}
Figure 7-10 Elementary celis: {&) not permitted; (b) permitted.

be specified. Surfaces that form the outer boundary of the problem must be
specified as vacuum, reflective, surface source, or other boundary condi-
tions.

Tracking. In a Monte Carlo calculation the foregoing geometrical informa-
tion is typically used in the following way. At the time a particle is born or
at the time it makes a collision the elementary region that it is in and its
x, y, z coordinates are known. Sampling is then carried oul to determine the
number of mean free paths the particle will travel before its next collision.
From the previous sampling of the source distribution or the scattering
kernel its direction cosines are also known. From this mformation the
distance along the line of travel to each of the cell surfaces is determined.
The distances that correspond to travel in the — @ direction are deleted, and
the shortest distance in the +{ direction is designated as the distance to the
region boundary. For example, in Fig. 7-11 u; is the distance to the
boundary. This distance is computed in mean free paths (e.g., uo,) and
compared to the number of mean free paths that the particle is to travel
before its next collision. If the optical distance to the boundary is greater,
then the next collision is in the same region, and its location can be
determined. If the optical distance to the cell boundary is smaller than that
to the next collision, the particle is determined to enter whatever region is
designated to lic on the other side of the interface. Using the same
procedure the optical distance along the flight path to the boundary of the
newly entered cell is calculated. The sum of the optical paths traveled by the
particle is then determined to decide whether it should collide in the region.
If so, a collision point is determined. If not, the procedure is repeated for
the next region that the particle enters, and so on, until a cellision is made
or the particle escapes the system.

This latter procedure for boundary crossing is illustrated in Fig. 7-12.
Suppose that r is the optical distance determined from the random number
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-H/2=0

e x?+y? _RZ=0

z+H2=0

Figure 7-i1 Example of Monte Carlo tracking in three-dimensional geometry.

to be traveled by a particle. The track begins in the region with o = o), as
shown, and travels distances u,, u,, and u, in regions with cross sections o,
a,, and oy. If it is found that oyu;, < 7,00 + 0u; < 1,00, T 0,u; + 03U,
> r, the particle would make a collision in region 3 after traveling a
distance u < u, determined from

ou; + oy + o=, (7-184)

In practice a great deal more checking must go on during the tracking
procedure. At each region crossing a check must be made to determine

S -

Figure 7-12 lllustration of boundary crossing for three-dimensional geometry.

oAl =R
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whether a path length estimator of the flux is to be made for that region,
just as a check must be made for the collision estimator each time a collision
is made. Similarly, each boundary crossing may involve a current or flux
estimator tally, and possible particle splitting or Russian roulette.

Description Simplifications. From the foregoing it is seen that the prepara-
tion of input for a Monte Carlo code with a complex geometry may be very
complex. Indeed a great deal of cross-checking is necessary to avoid the
all-too-common preblem of specifying a logically inconsistent geometry
with undefined or inconsistently defined regions of space. A great deal has
been done both to simplify the specification of geometry and to provide
internal consistency checks by the computer on geometrical data.

Although the detailed tracking must be done in terms of elementary
volumes with no concave corners, material regions and/or regions over
which one may want to tally volume-averaged fluxes or other quantities may
have larger and more general shapes. These regions can be specified as the
unions of the elemental regions heretofore discussed, since it is only they
and not the elemental regions over which the results of the calculation are
tallied. A great deal more can be done in reducing the amount of effort
required to specify geometry. In combinatorial geometry methods®~?® one
is not asked to deal specifically with the equations for the surfaces. Rather,
regions are specified in terms of elemental shapes, parallelepipeds, cones,
spheres, and so on. A minimum of data on their size, shape, location, and
orientaticn then needs to be provided. Such methods when combined with
computer graphics techniques for picturing the geometrical resuits have
come a long way toward making Monte Carlo methods accessible with a
minimum amount of input, and reduced the chances for undetected input
€rrors.

7-8 CRITICALITY CALCULATIONS

Thus far our discussion has centered about the Monte Carlo simulation of
fixed source problems, governed either by the continuous form of the
transport equation given by the time-independent form of Eq. 1-79 or its
multigroup approximation. These forms of the equation are directly applica-
ble to a variety of shielding and other types of problems. In reactor
calculations, however, the fission process must enter the calculations. In
reactor shielding problems it is most often incorporated into a fixed source
problem as follows. A reactor criticality calculation is carried out-—perhaps
using a deterministic method —to determine the reactor power distribution.
This distribution is then used as input data to the Monte Carlo shielding
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calculation, by generating a fission spectrum source of neutrons that has a
spatial distribution that is proportional to the power distribution. The entire
calculation is then normalized to the reactor power.

At other times it is desirable to actually deiermine the system multiplica-
tion and integral information about power and /or flux distribution directly
from a Monte Carlo calculation.®*’~* If this is to be done, more than one
generation of neutrons must be considered, for the method of calculating
k ¢ closely parallels the outer iterations procedure discussed in conjunction
with deterministic methods in Chapter 2.

Estimation of Muitiplication

The basic idea used in calculations for the cigenvalue & is the same as that
used in the inverse power iteration method. Given a distribution of fission
neutrons, follow them through their lifetime and determine how many
fission neutrons they give rise to in the next generation. The ratio of the
number of fission neutrons in the jth generation, say F}, to that in the j — 1
generation then gives the multiplication of the system k, for the jth
generation. Hence

k=2 (7-185)

After a sufficient number of generations the spatial distribution of neutrons
from one generation to the next will become stationary except for statistical
fluctuations. At this point the so-called fundamental mode or cigenfunction
has been obtained, and the corresponding eigenvalue will no longer change
from generation to generation. The converged solution for & has thus been
obtained.

In a Monte Carlo eigenvalue calculation some finite number of neutron
histories, say N, is originated by sampling a probability distribution of
fission neutrons. This distribution is isotropic and is distributed in energy
according to a standard fission spectrum x(E). In the first generation the
spatial distribution of the fission neutrons is determined either from a guess
or as the result of a simplified calculation. The source for each succeeding
generation is then determined from the results of the preceding generation.

In the jth generation each history is followed and its contribution, say
x,|;» to the number of fission neutrons produced in the (f + 1) generation is
calculated. The mean value

. 1
x|}.=-h-{}:x,,|}. (7-180)
n
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may then be used as an estimate for k;, since £|; has in effect been
normalized to one neutron in the preceding generation. From the history
additional information must be obtained: the distribution of fission loca-
tions from which to start the next generation of particles.

In general, then, each generation of particle simulation proceeds in the
same manner as in a fixed source problem with the exception that efficient
tallies must be included (a) to specify the spatial fission distribution for the
next generation, and (b) to estimate the number of fission neutrons pro-
duced in the next generation. In a strictly analog treatment of the within-
generation problem these two things may be closely linked. In practice the
two functions are often separate to optimize each.

In a strictly analog procedure absorption is not suppressed, and each
particle has a weight of 1 until it is absorbed or escapes. At the time of
absorption the particle will produce

3 vo,(F,E)
Xy = GH(F,E) ] (7'187)

neutrons in the next generation. Here E and 7 designate the phase-space
point of the particle absorption, where the cross sections are summed over
all the nuclides present at 7. The value of ¥ is recorded, and x, particles are
produced from an isotropic sampling of the fission spectrum. Since x,, is not
an integer, the scurce particles would carry weights. This is avoided by
writing

x, =1 +R, (7-188)

where I, is an integer and 0 < R, < 1 is the remainder. One then starts I,
particles at 7. Then a random number £ is generated and if { < R, an
additional particle is generated. If not, then no additional particles are
generated. In this way an unbiased estimate of x, is obtained.

If more general nonanalog procedures are allowed, collision and track
length estimators as well as the absorption estimator may be used to
estimate the fission source distribution for the next generation. Both colli-
sion and track length estimators may also be used for the number of
neutrons produced in the next generation. In general each neutron in a
nonanalog simulation will carry a weight that is reduced at each collision to
compensate for suppression of absorption. Thus the x,, in Eq. 7-187 will
now be determined by

Xy = L Weily (7-189)
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where w,, is the weight of the neutron at the time of the ith event of the nth
history that contributes to X. The collision estimator is then
va, (F, E)
f *
Cop=t = 7-196
o e(F,E) |, ( )

where F, E is again the phase space location of the ith collision, and the
cross sections are averaged over the nuclides present. The spatial location of
the new source neutrons is calculated as follows.” Write

WaiCmi = ‘fm + Rm’ (?'19])

where again I, is an integer and the remainder has the property 0 < R, < 1.
Hence as with the collision estimator, we generate /,, particles at ¥ in an
isotropic fission spectrum, and generate I, + 1 only if R, > § where { is a
uniformly distributed random number between zero and one.

Note that with either the analog absorption or the collision estimator one
could generate one particle with a weight of x,, for absorption (or w,,x,, for
collision) at each specified space point. This could have the following
deleterious effect. For absorption the number of particles per generation
would decrease since the number of absorptions is smaller than the number
of source particles, due to the surface leakage. Moreover, il leakage is
significant, this reduction would be so rapid it would cause N to become
unacceptably small before a fundamental mode distribution is reached.
Likewise, if the collision operator is used, and one source particle per
collision with a weight w, x,,;, the result will be that with each generation the
number of source particles will have very small weights. Thus after a few
generations the number of particles would become exceedingly large. As a
rule, it is desirable to keep the number of particles in each generation about
the same. This is done exactly by the unweighted absorption and collision
estimators if the x, or x,, are divided by the current estimate of k before
Eq. 7-188 or 7-191 is applied.

Track length estimators are not well suited to determining the spatial
distribution of fission for the next generation because they are not localized
at specific space points. Track lengths, however, can provide a second and
often almost independent estimate of the number of fission neutrons pro-
duced. Therefore, while the collision and path length estimators are always
correlated to some degree, the variance of the multiplication estimate can be

reduced by averaging the estimators. The track length estimator is simply
vo,
x,= Tty =2 (7-192)

i 4
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where w,; is the neutron weight as it crosses region i, [, is its total track
length across region i, and »g;/g)], is the macroscopic cross section in
region i.

Error Evaluations

While the foregoing computational algorithms take the form of straightfor-
ward generalization of those used for fixed source problems, the estimate of
confidence intervals for Monte Carlo eigenvalues is fraught with difficulties
not found in fixed source problems.?”* These arise from the interactions of
two sources of error that appear in criticality calculations: (1) the finite
number of histories N per neutron generation, and (2) the finite number of
generations that are tracked before the calculation is terminated. Morcover,
there is a tradeofl between these limitations. If a large number of histories
per generation is followed, one may not be able to afford many generations.
Conversely, if a large number of generations is required, severe limitation
may be placed on the number of histories that can be tracked per genera-
tion.

It is difficult to determine a priori for a particular class of problems what
combination of generations and histories per generation will give the most
accurate result for a fixed amount of computing effort. Nevertheless, it is
instructive to examine the limitation due to each of these parameters if those
from the other were to be eliminated. Suppose first that a calculation with a
very large number of histories per generation is carried out, the variance in
the estimators %|, for each generation is very small and might be sketched
as in Fig. 7-13a. There is, however, a systematic bias which results from the
fact that a fundamental mode distribution of fission neutrons is not used to
obtain the first generation of neutrons; moreover, it is not reached after the
relatively few generations that can be afforded.

Suppose, conversely, that a relatively small number of histories is tracked
per generation in order to be able to track many generations. Now the
difficulty is of a different nature. For even if it is assumed that enough
neutron generations are tracked that the spatial sampling for the fission
source will provide an unbiased representation of the fundamental mode,
large variance will arise in the fission neutron estimators %, due to the small
value of N. The results are then likely to look similar to those in Fig. 7-13b,
with the estimator having unacceptably large fluctuations about the true
value; moreover, the magnitude of these fluctuations will not decrease, no
matter how many generations are tracked.

As illustrated in Fig. 7-13, the error bars in the & " results take into
account only the statistical uncertainty for each generation, assuming that
the exact fission source has been sampled, for they are calculated from the
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Figure 7-13 Variance of the estimators for a K eigenvalue problem: () a large number
of histories / after few generations and (b) a small number of histories / after many

generations.

variance o2(%| ;)- Hence they give no indication of the lack of convergence
indicated by Fig. 7-13a. Thus in practice one must be exceedingly careful
not to begin using estimators of k; until it is assured that the fission source
distribution represents the fundamental mode. Usually it is possible to use
the results from a similar problem or from a simplified deterministic
calculation to obtain an initial guess that will greatly reduce the number of
generations needed to reach a fundamental mode distribution.

Assuming that enough generations are followed to reach the fundamental
mode, it usually is not possible to track enough histories N per generation
to obtain an acceptably small value of the variance o(%|,) = o*(x|,)/N. To
circumvent this difficulty one invariably averages values of %, over a number
of generations and calculates the multiplication from

1,
k= ijIJ (7-193)
F ]

where J is taken between some initial value J, large enough for the
fundamental mode to have been reached and the final value J, + J at which
the calculation is terminated.

This generation-averaged multiplication will be more accurate than if the
result of just a single generation were to be used. Most often the associated
uncertainty is calculated from the variance for JN histories:

pew - o
J
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It should be realized, however, that this will underestimate the uncertainty
in the result, even though a fundamental mode has been reached. The
histories of successive generations are always correlated to some degree,
since the fission neutron source points are determined by the collision or
absorption peints of neutrons of the preceding generation. Since the histo-
ries of successive generations are not totally independent, the derivation
applicable to Eq. 7-194 found in Section 7-4 is no longer valid.

Although Eq. 7-194 rests on shaky foundations, in practice it is often
found to yield acceptable error estimates. More general strategies may also
be applied. For example, it may be desirable to increase the number of
histories monotonically with each generation. By doing this the calculation
may be shown to be a “fair game” that will converge to the exact result as
the number of generations goes to infinity.?’
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